精选小学数学教案模板合集八篇
作为一名专为他人授业解惑的人民教师,就有可能用到教案,教案是教学活动的总的组织纲领和行动方案。那么你有了解过教案吗?下面是小编精心整理的小学数学教案8篇,希望对大家有所帮助。
小学数学教案 篇1
认识时间单位时、分、秒,相邻单位间的进率,认读钟面上的整时或了解24时记时法,进行两种记时法的相互改写,计算经过时间。
学生在前几册教材里学习了时、分、秒,本单元继续教学年、月、日。全单元教材共编排了两道例题、两次想想做做和一次实践活动。在你知道吗里介绍了一年的春、夏、秋、冬四季,指导学生看课外书籍、上网查找资料,搜集有关年、月、日的知识。教学内容大致分成三段:第一段教学年、月、日以及相关的大月、小月等内容,第二段教学平年、闰年、季度等知识,第三段是实践活动。
1、年、月、日以及相关的内容。
这一段内容涉及许多知识,学生在日常生活里或多或少都有过接触,积累了一些经验。教材尽量利用学生的已有经验,提供观察材料,组织学习活动,激活已有经验,引导发现规律,适当解释点拨,帮助学生理解知识并建立自己的知识结构。
教材让学生从年历卡上找自己的生日切入,既引起兴趣,又提供了学习用具。设计的学习活动有观察整理、填表分类、涂色记忆、计算交流等,让学生在动手实践、自主探索的同时接受年、月、日的知识。
首先要求学生观察20xx年的年历从中获得信息。年历卡里的内容十分丰富,要结合观察与交流指导有困难的学生学会看年历。如年历里的1、2、312表示一年里的1月、2月、3月12月;每月都有一张月历,其中的日、一、二、三、四、五、六都表示星期几,1、2、3、4表示每月的1日、2日、3日、4日在年历卡上能查到每月有多少天,各天分别是星期几。
接着要求学生把各个月的天数填入一张表格。填表活动能让学生更清楚地知道一年有12个月,各个月的天数并不都相同。填表还能引发学生把12个月按天数进行分类,在此基础上接受大月、小月的知识。
然后指导学生在填各个月天数的那张表格里涂颜色。涂色活动实际上是分类活动,通过再次分类记忆一年里的大月和小月。教材要求每个学生都能记住一年里哪几个月是大月、哪几个月是小月,鼓励他们自己设计记忆方法。同时,也介绍了利用拳头帮助记忆的办法。
最后突出2月的天数既不是31也不是30,它既不是大月也不是小月。教材还让学生计算20xx年全年的天数,通过计算重温这一年各个月的天数,检查记忆效果,弥补记忆中的缺漏。学生计算全年天数的方法必定是多样的,交流并比较各种算法,体会比较简便的方法,有利于学生建构有关年、月、日的知识。
想想做做在年历上圈出重大节日和有纪念意义的日子,一方面巩固知识,另一方面进行思想、情感的教育。
2、平年和闰年。
平年和闰年的教学分四步进行。
第一步发现现象,初步知道平年和闰年。第19页例题让学生同时观察20xx年2月和20xx年2月的月历,比较这两个2月的天数是否相等。让学生发现不同年份的2月天数不同,然后告诉他们,什么是平年、什么是闰年。
第二步同时观察从1997~20xx连续十二年的2月月历,从中寻找天数的规律。教材特地把这些月历分成三行,每行是连续的四年,方便学生发现每一行的四张月历里只有一张是29天,另三张都是28天。从而明白通常每四年里有1个闰年、3个平年。教材里讲解了判断平年、闰年的一般方法,至于公历年份是整百数的,安排在底注里讲解。
第三步在想想做做里巩固平年、闰年的知识。第1题通过把公历年份除以4进行判断,虽然教材只教过三位数除以一位数,但学生完全能够自己进行四位数除以4的计算。第2题计算平年的全年天数,合几个星期零几天,结合计算再次温习前面学习的年、月、日知识。教学时还可以让学生说一说闰年全年有多少天以及怎样算的,再次清晰地认识平年与闰年。第4题回答并解释一种比较特殊的.生日现象,巩固连续四年里一般有1个闰年的知识。
第四步是你知道吗,引导学生通过课外阅读了解为什么通常每四年有1个闰年的原因。
3、实践活动《生日快乐》。
这次实践活动以学生的生日为题材,活动形式新颖有趣,紧扣年、月、日的知识,运用了统计方法。活动分两段进行:第一段是学生相互介绍自己的生日是哪天。教材鼓励学生用不同的方法间接地讲述,让同伴猜一猜是几月几日。这里会涉及年、月、日的许多概念,学生一定很感兴趣。第二段是用统计的方法调查、整理并用图表呈现班级里学生的生日分布情况,是一次联系实际的活动。最后是记住爸爸妈妈的生日,进行孝敬长辈的教育。这次活动要认真组织,让每名学生都有机会说话,然后请几名学生在全班交流,落实对学生的品德教育。
小学数学教案 篇2
教学目标
1.通过复习,使学生进一步认识学过的一些立体图形的特征,掌握不同立体图形之间的异同.
2.通过复习,使学生能够灵活运用所学过的立体图形的特征解决简单的实际问题.
3.进一步发展学生的空间观念.
教学重点
1.通过复习,使学生能够灵活运用所学过的立体图形的特征解决简单的实际问题.
2.进一步发展学生的空间观念.
教学难点
进一步发展学生的空间观念.
教学过程()
一、谈话导入.
我们已经复习了平面图形的相关知识,从今天开始,复习立体图形的知识.这节课,复习立体图形的特征.(板书课题)
二、复习立体图形的基本特征.
提问:我们学习过哪些立体图形?谁来拿出不同的立体形体,告诉大家各是什么名称.
出示立体图形
请你分别说一说每个立体图形的名称及各部分的名称.
(圆锥体、长方体、正方体、圆柱体和长方体)
它们有什么特征呢?我们先来复习长方体的特征.
(一)复习长方体的特征.【演示课件“立体图形的认识”】
出示长方体:
1.同学以组为单位一起回忆.
a.长方体的特征.
b.想一想你是从那几方面对长方体的特征进行总结的.
(点、线、面)
长方体
顶点
有八个顶点
线
有十二条棱,相对的四条棱的长度相等
面
有六个面都是长方形(有时有相对的两个面都是正方形),每相对的两个面面积相等.
2.教师总结:我们通过点、线、面三个方面对长方体的特征进行总结.
(二)复习正方体的特征.【继续演示课件“立体图形的认识”】
出示正方体:
1.正方体有什么特征呢?它又是从那几方面进行总结的呢?
2.教师完善长方体、正方体的特征表.
长方体
正方体
顶点
有八个顶点
有八个顶点
线
有十二条棱,相对的`四条棱的长度相等
有十二条棱,每条棱的长度都相等.
面
有六个面都是长方形(有时有相对的两个面都是正方形),每相对的两个面面积相等.
有六个面都是正方形,并且每个面的面积都相等.
3.长方体、正方体特征对比.
共同讨论:
(1)长方体与正方体有什么共同特征呢?
(2)长方体与正方体有什么不同之处呢?
相同点:长方体与正方体都有6个面,12条棱和8个顶点.
不同点:
a.“线”上的不同点:长方体的棱分别是相对的4条棱相等,分别叫做长方体的长、宽、高.而正方体的12条棱全部相等,叫做正方体的棱长.
b.“面”上的不同点:长方体至少有4个面是长方形,而正方体的6个面都是正方形.
(3)长方体与正方体有什么关系?
正方体是特殊的长方体
(三)复习圆柱体与圆锥体的特征.【继续演示课件“立体图形的认识”】
出示圆柱体:
1.请同学共同讨论圆柱体有什么特征?
教师提问:
(1)这两个底面有什么特点?(圆柱体的两个底面积相等)
(2)侧面又有什么特点?(侧面展开图是一个长方形或者是一个正方形)
(3)底面与侧面又有什么联系?
(当底面周长=圆柱体的高的时候,侧面展开图是一个正方形,当底面周长≠圆柱体的高的时候,侧面展开图是一个长方形)
2.出示圆锥体:
请同学共同回忆圆锥体的特点:
教师提问:同底等高的圆锥体与圆柱体有什么关系?
(四)分类,建立知识网络.
我们所学过的长方体、正方体、圆柱体和圆锥体四个立体图形中你能够给他们进行分类吗?
三、练习.
1.填空:
(1)一个长方体有 ( )条棱,相交于一点的三条棱分别叫做长方体的( )、( )、( ).
(2)一个长方体有( )组长度相等的棱.
(3)一个正方体有( )个顶点,( )条棱,( )个面.
(4)正方体有( )个相等的面.
(5)圆柱体有( )条高,圆锥体有( )条高.
(6)圆柱体有( )个面,这些面中有( )个相等的面,它们分别是圆柱体的( )面与( )面.
2.一个长方体的棱长总和是40厘米,其中长5厘米,宽3厘米,高是多少厘米?
3.一个正方体的棱长是5分米,如果把这样的两个正方体拼成一个长方体,长方体的棱长总和是多少米?
4.一个圆锥体,底面周长和它的高相等,它的底面半径是3厘米,你知道和它同底等高的圆柱体的侧面积是多少平方厘米吗?
四、课堂小结.
通过这堂课的学习,你有什么收获?
五、板书设计.
立体图形的认识
分类
长方体
正方体
圆柱体
圆锥体
特征
小学数学教案 篇3
教学目标:
1、使学生经历测量过程,知道毫米产生的实际意义。
2、通过观察,明确毫米与厘米的关系,会进行简单的换算。
3、使学生在操作中学会用毫米作单位进行测量。
4、使学生建立1毫米的长度观念。
教学过程:
一、情景导入
1、小组合作学习,估计课本的长、宽、厚。
(1)出示例1情境图,学生认真观察。教师提出问题。
(2)4人小组合作,分别估计一下数学课本的长、宽、厚。将估计的结果填在记
录表的.“估计”一栏中。
(3)对估计的结果进行反馈。
2、用测量的方法验证估计的结果。
(1)分组测量课本的长、宽和厚。测量时,将遇到的问题记录下来,用自己喜
欢的方法表示测量的结果。
(2)交流测量的结果,引出毫米。板书课题“毫米的认识”。
二、探究体验
1、了解毫米与厘米的关系。
(1)提问:“从尺中,你发现毫米与其他单位间的关系吗?”。
(2)学生观察并独立思考后回答问题。从而引出1厘米=10毫米的关系。让学
生多说发现这个关系的过程。
2、帮助学生建立1毫米的长度观念。
(1)在尺上观察1毫米的长度,互相比划一下1毫米的长度。
(2)教师提出问题:“请大家说出生活中长或宽或厚大约是1毫米的东西。”
先在组内说,再在全班交流。
(3)要求学生合作完成:先从课本中数出几页(捏紧后的厚度大约是1毫米),
再用尺子验证一下是不是1毫米,然后调整到厚度是1毫米,最后数一数看有多少张。
三、实践应用
1、生独立完成“做一做”,再在小组内说出填写的结果。
2、生说一说,在生活中测量哪些物品一般用“毫米”作单位。
3、师生共同小结:当测量长度的结果不是整厘米数时,可以用毫米来表示;1厘
米=10毫米;1分硬币、电话卡、储蓄卡、医疗保险卡等的厚度大约都是1毫米……
四、课堂练习
1、练习一第1题。安排学生在书上完成,练习时要求学生先估测,后判断,再
用尺子进行测量验证。
2、练习一第2题。要求学生完成在作业本上。
3、练习一第3题。先让学生估计实物的长(或宽),再用尺子进行测量。完成
后,让学生对估计和测量的结果进行对比。
五、全课总结
1、通过今天的学习,你学到了什么新知识?
2、师总结。
分米的认识 学习设计
小学数学教案 篇4
教学内容:练习十四第4-9题
教学目标:进一步掌握商的中间和末尾有0的除法计算,能正确地计算并能验算,提高除法的计算能力。
教学重、难点:掌握商的中间和末尾有0的除法计算,能正确地计算并能验算。
教学具准备:小黑板。
教学过程:
一、揭示课题
1.明确练习内容。
我们已经学过商中间和末尾有0的除法,这节课就练习商中间和末尾有0的除法。(板书课题)通过练习,要更加掌握商的中间和末尾有0的除法笔算,并且要能用学过的验算方法,检查算得对不对,提高除法计算的能力。
3.提问:在除法笔算里,商的数位上什么时候要商0?
二、除法练习
1.做练习十四第4题。
(1)除到被除数哪一位,不够商1就要在哪一位上面商0。现在请同学们根据这一方法,按笔算法则计算练习十四第4题,并且验算。
先让学生说说商是几位数,再指名4人板演,学生分四组练习,每组一题。
(2)集体订正。
提问:第二小题为什么百位、个位上都是0?第三小题为什么末尾有两个0?
第一小题是怎样验算的?第三小题呢?验算的过程有什么不同?为什么?
2.做练习十四第5题。
(1)在课本上找一找,每道题的计算对不对,不对的在课本上改正。
(2)指名学生回答错在哪里,为什么错,是怎样改正的。(老师在小黑板上改正)
3.对比练习
(1)做练习十四第6题第一组题。
指名2人板演,其余学生做在练习本上。集体订正。
提问:这两题的.末尾为什么都是0?为什么第二小题有余数?
(2)做练习十四第6题第二组题。
练习方法与第一组题相同。
集体订正后提问:这两题商里两个0的位置有什么不同?为什么会不同?
(3)做练习十四第6题第三组题。
练习方法与上面第组相同。
集体订正后提问:这两题商里0的位置又有什么不同?为什么会不同?
:通过这三组题的对比,我们更知道了在求出商的最高位上的数以后,除到被除数的哪一位不够商1,就在这一位上面商0,不能写错或随便调换位置。计算时还要注意有没有余数。
4.说出下面每题的商是几位数,哪一位上要商0。
306÷3360÷31÷42041÷4
追问:哪几道有余数?
5.做练习十四第8题。
要求学生笔算后在书上方框里填上合适的数。集体订正。
三、课堂
今天这节课练习了商中间和末尾有0的除法,谁来说一说,笔算除法除到被除数哪一位,在什么情况下要在商的这个数上写0?
四、课堂作业
练习十四第7、9题。
小学数学教案 篇5
在前面的教材里,学生已经认识了条形统计图和折线统计图,能够利用这些统计图表示数据及变化态势;初步理解了平均数的意义,会求一组数据的平均数,能够应用平均数对数据进行分析、比较。本单元教学扇形统计图、众数和中位数,扇形统计图过去是选学内容,现在是基本的教学内容,而众数和中位数是根据《标准》的要求新增加的教学内容。扇形统计图能直观地表示出各个部分的数量分别是总数量的百分之几,众数和中位数都是统计量,在平均数不能有效地反映出一组数据的基本特点时,往往选用众数或中位数来表达数据的特点。因此,本单元的教学能进一步提高学生表示数据、分析数据的能力。教材编排了四道例题和两个练习,例1和练习十五主要教学扇形统计图的知识,例2至例4以及练习十六教学众数和中位数的知识。
1.以百分数的知识为基础,教学扇形统计图。
例1教学扇形统计图,分两步进行。第一步从整体到部分认识扇形统计图,让学生观察我国陆地地形分布情况统计图,体会图中的数据信息的具体含义,理解这张统计图用一个圆表示我国陆地的总面积,用五个扇形分别表示平原、盆地、高原、丘陵、山地各占国土总面积的百分之几。由于五种地形所占总面积的百分比不同,所以五个扇形的大小不同。教材及时指出,这样的统计图叫做扇形统计图,它能清楚地表示出各部分的数量与总数量之间的关系。经过这一步教学,学生知道扇形统计图与条形统计图、折线统计图相比,不仅形状不同,而且表达的数据内容也不相同。第二步根据已知的我国国土总面积,利用扇形统计图里的数据,分别算出五种地形的面积并填入统计表,进一步体会扇形统计图的特点。由于计算比较复杂,所以使用计算器。
教学扇形统计图,要理解图中的百分数的具体含义,并利用这些百分数进行相关的计算,不要求学生制作扇形统计图。练一练和练习十五根据教学要求,设计了两方面的练习内容。一是从统计图中各个扇形的大小以及表示的数据出发,进行分析与解释。如练一练第1题看图说出7月份哪项支出最多。第2题从我国的国土只占世界的7%,人口却占世界的22%,想到我国人均占有的土地比较少,人口密度很大。练习十五第1题通过对应数据的比较,判断哪天的食物搭配比较合理。二是看图估计或计算,如练习十五第2题根据拼盘里的花生米所占面积的百分比,估计其他干果各占面积的百分比。第3题分别计算我国四个海域的实际面积。
2.联系现实的'素材,教学众数和中位数。
在一组数据中出现次数最多的那个数,是这组数据的众数。由于众数在一组数据中出现的频率最高,所以众数反映了这组数据的集中情况。教学众数,要让学生领会众数的意义,学会在一组数据中得出众数的方法。例2用表格呈现9个学生每人用20粒黄豆种子做发芽试验的结果,先看表在括号里填数,感受发芽17粒的人数最多,有5人。然后把9个数据依次排列,指出17出现的次数最多,是这组数据的众数。教学这一段内容,首先要形成正确的众数概念数据中出现次数最多的那个数。在发芽结果的数据中,17出现了5次,17是出现次数最多的数,5是它出现的次数,这组数据的众数是17,不是5。其次要知道求众数的方法在一组数据中寻找出现次数最多的那个数。不管这个数出现了几次,只要比其他数出现的次数多,它就是这组数据的众数。例题还要求计算这组数据的平均数,联系实际比较平均数和众数的意义,体会它们是两个不同的概念,进一步理解众数。
第79页练一练第1题通过找出一组学生的年龄的众数,巩固众数概念和求众数的方法。第2题在解决实际问题时应用了众数,鞋店上周销售皮鞋中,25.5cm这个尺码的皮鞋售出的双数最多,25.5是这组数据的众数,所以进货时要多一些这个尺码的男鞋。练习十六第1题配合例2的教学,男生身高的众数是153,女生身高的众数是148,10名男生里3人的身高是153厘米,10名女生里5人的身高是148厘米,所以说女生身高的众数更能反映这组学生的身高情况,即更具有代表性。这就是众数作为一种统计量,在描述一组数据特征时能起的作用。
一组数据按大小顺序排列,居于中间位置的那个数是这组数据的中位数。如果这组数据的个数是单数,那么中位数是正中间的那个数;如果这组数据的个数是双数,那么正中间的两个数的平均数才是这组数据的中位数。教材编排两道例题,分别教学这两种情况。
例3要求学生评价7号男生的跳绳成绩在这组同学中的位置,有的学生可能根据算出的平均每人跳117下,认为7号男生跳的比平均数少。有的学生可能把7号男生跳的下数与其他男生比较,得出他的成绩是第三名。这些都是学生利用原有的知识、经验进行的比较。为什么7号男生跳的下数比平均数少,成绩还是第三名?为了解决这个疑问,例题先教学中位数的知识,指出把这组数据按大小排列,正中间的一个数102是这组数据的中位数,既揭示了中位数的含义,又讲了求中位数的方法。再把7号男生的成绩与中位数比,看到尽管他跳的下数比平均数少,却比中位数大,在这9个男生中的名次还是比较靠前的,初步体会中位数与平均数是两个不同的统计量。例题还要学生思考为什么这组数据的平均数比中位数多得多,这是由于2号和8号男生的成绩十分突出,远远多于其他男生跳的下数,他俩的优异成绩使男生跳绳的平均数大了,而多数男生的跳绳成绩都低于这个水平。所以,如果一组数据里存在特别大或者特别小的极端数据,平均数往往不能准确地表达这组数据的整体状况,这时用中位数表示这组数据更合适。
例4求10个女生跳绳成绩的中位数,这组数据的个数是双数。教材指出,正中间有两个数,中位数是这两个数的平均数,并要求学生算出这组数据的中位数,学会求这种情况的中位数的方法。然后把各个女生的成绩分别与中位数比较,体会用中位数能评价每个数据在整体里的地位。
练一练的教学不能偏重于求平均数和中位数,要把时间用在第(2)、(3)两个问题的讨论上。9位同学家庭的住房面积中,有两个数据比其他数据小很多,所以平均数比中位数低得多,用中位数代表9个家庭的住房水平比较合适。练习十六第2题的数据中,A飞机的飞行时间只有8秒,比其他飞机少得多,一般用中位数表示这8架飞机的飞行水平。如果A飞机不飞,其他飞机的飞行时间虽然有多有少,但差距不是很大,所以平均数和中位数比较接近,都能代表这些飞机的飞行水平。第3题公司的经理、副经理的月工资比其他员工高出很多,教材让学生分别算出公司员工月工资的平均数、中位数和众数,体会平均数比中位数、众数大得多,应该用中位数或者用众数来反映这个公司的工资水平,进一步理解中位数与众数的实际应用。
小学数学教案 篇6
建议思考的问题
1.教学中课本上的结论是否就是定论?
2.课堂上采用小组讨论形式,万一发言一发不可收,提出令人尴尬的问题或课堂教学秩序混乱,教学任务完不成怎么办?
3.课堂上小组讨论是否会流于形式,反而浪费了课堂时间?
背景
最近,我教《约数和倍数》这一章,感到非常头疼。因为我教书8年来,一直认为这章概念多,难理解,要想学生学好,必须讲得细,扎扎实实练好每一节。所以,我认真备课,把要学的每一个知识点都准备讲得清清楚楚。但事与愿违,上课时,许多学生觉得挺简单,我在讲解时,他们不停地插话,打断我的思路;可让他们做作业时,却错误百出,真是“自以为是”!但是不让他们插话,认真听我讲,结果他们兴趣索然,趴在桌上不想听课!我真是不知该怎么办,甚至埋怨这班学生不如其他班的,真是“朽木不可雕也!”。
后来,我停止了抱怨,开始反思:如何能让学生积极、主动地参与呢?嗯……对!要转变学生的学习方式,使他们成为学习的主人。
案例描述
一、复习。
1.什么叫公约数?什么叫最大公约数?
2.自己默默地想一想如何求两个数的最大公约数。
二、教学新课。
(黑板上出示)求下面每组数的最大公约数,如能简便,请用简便方法计算;如不行,就用短除法来求。
11和12 8和15 12和18 21和7
学生们认真地观察这些数字,进行着思考和计算。一会儿,有的学生喜形于色,有的学生紧锁眉头,此时的教室里鸦雀无声,每个学生都在积极地思索(进入了状态),5分钟过去了,一个学生轻轻问:“段老师,讲讲吧?”我歉然一笑,说:“老师现在不会告诉你的。”接着又向大家说:“现在分小组讨论,交流各自的意见。”
一句话击起了“千层浪”,学生们展开了热烈的讨论,有些学生认为4个题都可简便,有些学生认为有三个可简便,有些学生还认为简便的方法不只一种。这时,我出示了一张表:
根据工作表,小组长带领组员思考要探究的问题,大胆地提出自己的猜想,并尝试着进行实践证明……在一番自主活动之后,师与生、生与生之间充分展示自己的思考方法和探究过程——
生:我认为第一组“11和12”可以简便计算,它们相差是1,最大公约数就是1。
生:(对刚才那个学生反问)我认为你的想法是错误的,11和12互质,所以它们的最大公约数是1。
生:(支持第一个学生)我举了好几个例子,比如7和8相差1,最大公约数就是1。
生:我认为只要是两个互质数,它们的公约数就只有1,因此,最大公约数也是1,例如:第一组中的“11和12”,第二组中的“8和15”;而其中11和12的最大公约数是1,也正好相差是1,这是一个巧合,也是正确的,但它不能代表所有互质数的求法,只能代表相邻的两个数的求法,又因为相邻的两个数一定互质,我们为何不把它归为一类:两个互质数,最大公约数就是1。
同学们听后纷纷投去赞许的目光。
师:同学们,道理只有越辩越明,经过刚才的讨论,我们得出一个结论:如果两个数是互质数,它们的最大公约数就是1。(投影出示)
生:我们组认为第三组“12和18”求最大公约数也可用简便方法,可以用公约数6去除,再看所得的商还有没有其他公有质因数,结果没有了公有质因数,因此,12和18的最大公约数是6。
生:(反对刚才那个同学所说的)我们在用短除法求最大公约数时,只能用质因数去除,怎么能用公约数去除呢?
生:是啊!只能用公有质因数去除,6是一个合数,不能用6去除。(一片议论声。)
师(引导):大家想一想最大公约数是求什么?
生:是求两个数公有的约数中最大的一个。
师:既然这个最大公约数既是18的'约数,又是12的约数,因此,就可以用18和12的公约数去除,大家之所以习惯用公有质因数去除,是因为短除法当时从分解质因数演变过来的,但从最大公约数的意义考虑,是可以用它们的公约数去除的。
学生听得非常认真,并且有恍然大悟的神情。
生:我发现第四组“21和7”也有简便方法,它们的最大公约数是7,7的约数有7,21的约数也有7,所以,它们的最大公约数是较小数7。
生:我对刚才那位同学进行补充,因为21是7的倍数,所以,21的约数必定有7,7又是它本身的约数,因此,它们的最大公约数是7。
师:同学们刚才说得非常好,这就是第二个规律(投影出示):如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
经过刚才的发言,举手的人渐渐少了,可有一位同学仍坚持不懈地高高举着手,我便请他发言。
生:我认为除了老师您黑板上的例子可以简便,还有一种可以简便处理的方法,那就是:两个相邻的奇数一定互质,它们的最大公约数也是1,虽然它包含在互质数这一类中,但仍比较特殊。
他的回答着实让我和同学们吃了一惊,当时,我也对他的答案是否正确把握不准。于是便领着学生们进行验证,发现果然是正确的,同学们都露出了佩服的神情。
接下来,同学们又认真地看书中例题,并且积极地做了相关的练习题。
课后反思
上面这个案例,是我在教学中的一个片段,它体现了我思想上的一些创新和转变。
1.由指令性活动向自主性探索转化。
在前段时间教学时,总是对学生不放心,结果只会束缚学生的手脚,阻碍学生思维的发展,因为真正能培养学生创新精神和实践能力的实践活动必须是学生自主的活动。这一节课中,学生自己在进行观察、假设、探究等高层次的思维活动之后,得出的结论是我始料不及的。
2.由问答式教学向学生独立思考基础上的合作学习转变。
在教学中,学生一直处于发现问题、解决问题的状态之中,用自己的思维方式进行探究,形成独特见解,此时的合作有了基础。当有了不同意见时,才会产生创新的思想火花;当意见相同时,就会充分展示自己的思想和表现欲,那小组合作怎会流于形式呢?可能这会“浪费”些时间,但这让我们的学生获得了多少知识和能力啊!
3.课本不能被当作惟一不可改变的标准。
课本在学生学习时起到了至关重要的作用,但学生可在此基础上进行探索和创新。例如在这节课上,学生们总结出来的规律可能被分别归入书中几类,但他们所发现的细微的结构特征是书上所没有的,它是那样有新意,我们有什么理由可以“一刀切”呢?
学生的学习方式的转变关键在于教师,一方面要求教师不断更新教学观念,树立先进的教学理念;另一方面要求教师能将先进的教学理念转化为教学行为,特别是要改变长期形成的、习惯了的旧的教学方式。只有让学生充分从事探究学习活动,发挥他们的自主性、主动性、选择性和创造性,才能真正地使他们成为学习的主人!
小学数学教案 篇7
教材分析
1、这节课是解简易方程的第一课时,是在学生学了四则运算及四则运算各部分之间的关系和学生已具有的初步的代数知识(如:用字母表示数,求未知数x)的基础上进行教学。
2、这节课为后面学习解方程应用题做了准备,为后面学习分数应用题、几何初步知识、比例等内容时要直接运用,这节课是教材中必不可少的内容,是本章节的重点内容之一。
学情分析
1、学生对本节课所学知识很感兴趣,这对开展有效的课堂教学奠定了良好的基础。
2、学生运用新知识解决实际问题的能力存在比较明显的差异,但不同的学生具有不同的潜力。
3、优秀学生与学习困难生对方程的理解在思维水平上有较大差异。
教学目标
1、结合具体图例,进一步理解等式不变的规律,会用等式不变的规律解方程。
2、掌握解方程的步骤和书写格式。
3、提高学生分析问题并用数学知识解决问题的能力。
4、培养学生进行数学探究的能力及合作意识。
教学重点和难点
1、本节课的重点是:根据等式的性质解方程。
2、本节课的难点是:理解等式的性质;掌握解方程的步骤和书写格式。
教学过程
一、复习导入:
1、什么叫方程?什么叫方程的解? 什么叫解方程?
2、前面,我们学习了两个等式保持不变的`规律,等式的不变规律是什么?
等式这些规律在方程中同样适用吗?
今天我们就学习如何利用等式保持不变的规律来解方程。
二、探究新知:
1、电脑出示课件例1。
2、从图中可以获取哪些信息?图中表示了什么样的等量关系?
要求盒子中有多少个皮球,也就是求x等于什么,该怎样列方程?我们怎样解这个方程?
3、探究怎样解方程。
利用天平让学生进行探究,怎样才能使天平左边只剩下x,而且保持天平平衡?
(让学生通过探究得出:从两边各拿走3个玻璃球,天平仍然平衡。)
4、知识迁移。
把刚才天平的做法用到方程上,也就是方程两边怎样做,方程左右两边仍然相等?
(方程两边同时减去一个3,左右两边仍然相等。)
板书+3—3=9—3
x=6
5、追问:左右两边同时减去的为什么是3,而不是其它数呢?
(因为方程两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程就是通过等式的变化,如何使方程的一边只剩下一个x即可。)
6、x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。
7、x=6是不是正确的答案呢?怎么验算呢?同桌之间进行讨论并验算。(x=6是方程的解)
8、学生练习:解方程(X+21=32 X+41=50)
9、学生讨论交流:解X+a=b这类方程的思路是什么?
10、如果方程的两边同同时加上同一个数,左右两边还相等吗?为什么?
11、学生尝试解方程:X—3=9
12、学生讨论交流:解X—a=b这类方程的思路是什么?
13、小结:解X+a=b这类方程的思路。(根据等式的性质1,在方程的左右两边同时加上或减去同一个数,左右两边仍然相等。实际上是加了什么就减去什么,减了什么就加上什么,两边同时进行。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。)
三、巩固练习:
1、填一填(出示课件)。
使学生进一步加深理解和运用等式不变规律1解决问题实际问题。
2、书上“做一做”第1题(1)题
3、巩固尝试:解方程(出示课件)。
让学生独立完成会用等式不变规律1解方程,强调验算。
四、课堂总结:
通过这节课的学习,你都有哪些收获?
五、拓展活动:
利用课余时间小组内探究像32—X=10这类方程可以怎样解?
六、作业设计:
练习十一第5题一二行,第6题一行。
小学数学教案 篇8
一、教学目标:
1、掌握乘除混合运算的顺序。
2、培养小数乘除法计算的技能。
二、教学重点:
掌握乘除混合运算的顺序。
难点:培养小数乘除法计算的技能。
三、教学准备:
多媒体
四、教学过程:
A、准备题:
78÷26×1425×(68÷17)
1、先说一说这两题的运算顺序。
2、独立完成,校对。
B、导入新课:
今天我们要来学习小数乘除混合运算,它与什么混合运算顺序相同。
C、讲授新课:
例9:9.728÷3.2×7.5
1、先算什么,再算什么?
2、学生独立完成。校对。
例10:1.75×(24.42÷3.7)
1、有括号的.先算什么,再算什么?
2、学生独立完成。校对。
教师小结:通过小数乘除混合训练,你觉得与整数混合运算比较感觉怎样?
D、巩固练习:
4.8÷0.4×64.8÷(0.4×6)
1、先让学生先试算,教师巡视
2、抽两名学生板演。
3、校对,说一说错误的原因。
4、让学生根据算式,编成两道文字题。
E、课堂小结:
1、小数乘除混合运算与什么混合运算顺序相同。
2、在计算过程中我们要注意哪些问题?
F、强化练习
70.75×0.26÷6.57.36÷(3.2÷0.04)
G、布置作业:
P-38第二题和第三题。
【小学数学教案】相关文章:
小学数学教案01-08
小学数学教案优秀10-13
小学数学教案【精华】03-27
小学数学教案精选15篇12-23
精选小学数学教案三篇03-01
小学数学教案3篇04-24
精选小学数学教案四篇05-17
小学数学教案三篇06-06
【精选】小学数学教案4篇04-03
【精选】小学数学教案3篇04-20