高一上数学教学计划

时间:2025-02-13 10:39:07 教学计划 我要投稿

高一上数学教学计划

高一上数学教学计划1

  一、指导思想:

高一上数学教学计划

  在我校整体建构和谐教学模式下,使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

  1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的.一些数学模式进行思考和作出判断。

  5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  二、教材特点:

  我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(a版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:

  1.“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

  2.“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

  3.“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

  4.“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

高一上数学教学计划2

  一、教学思想:

  使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

  1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  二、教材特点:

  我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:

  1.“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

  2.“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

  3.“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

  4.“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

  三、教法分析:

  1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。

  2.通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

  3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

  四、学情分析:

  两个班一个普高一个职高,学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的'计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

  五、教学措施:

  1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

  2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

  3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

  4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

  5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

  6、重视数学应用意识及应用能力的培养。

  俗话说的好,好的教学计划是教学成功的一半,作为一名优异的教师,做好一定的教学计划很有必要。

高一上数学教学计划3

  一 设计思想:

  函数与方程是中学数学的重要内容,是衔接初等数学与高等数学的纽带,再加上函数与方程还是中学数学四大数学思想之一,是具体事例与抽象思想相结合的体现,在教学过程中,我采用了自主探究教学法。通过教学情境的设置,让学生由特殊到一般,有熟悉到陌生,让学生从现象中发现本质,以此激发学生的成就感,激发学生的学习兴趣和学习热情。在现实生活中函数与方程都有着十分重要的应用,因此函数与方程在整个高中数学教学中占有非常重要的地位。

  二 教学内容分析:

  本节课是《普通高中课程标准》的新增内容之一,选自《普通高中课程标准实验教课书数学I必修本(A版)》第94—95页的第三章第一课时3。1。1方程的根与函数的的零点。

  本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形。它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3。1。2)加以应用,通过建立函数模型以及模型的求解(3。2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系。渗透“方程与函数”思想。

  总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。

  三 教学目标分析:

  知识与技能:

  1。结合方程根的几何意义,理解函数零点的定义;

  2。结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;

  3。结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间 的方法

  情感、态度与价值观:

  1。让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;

  2。培养学生锲而不舍的探索精神和严密思考的良好学习习惯;

  3。使学生感受学习、探索发现的乐趣与成功感

  教学重点:函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。

  教学难点:发现与理解方程的根与函数零点的'关系;探究发现函数存在零点的方法。

  四 教学准备

  导学案,自主探究,合作学习,电子交互白板。

  五 教学过程设计:

  六、探索研究(可根据时间和学生对知识的接受程度适当调整)

  讨论:请大家给方程的一个解的大约范围,看谁找得范围更小?

  [师生互动]

  师:把学生分成小组共同探究,给学生足够的自主学习时间,让学生充分研究,发挥其主观能动性。也可以让各组把这几个题做为小课题来研究,激发学生学习潜能和热情。老师用多媒体演示,直观地演示根的存在性及根存在的区间大小情况。

  生:分组讨论,各抒己见。在探究学习中得到数学能力的提高

  第五阶段设计意图:

  一是为用二分法求方程的近似解做准备

  二是小组探究合作学习培养学生的创新能力和探究意识,本组探究题目就是为了培养学生的探究能力,此组题目具有较强的开放性,探究性,基本上可以达到上述目的。

  七、课堂小结:

  零点概念

  零点存在性的判断

  零点存在性定理的应用注意点:零点个数判断以及方程根所在区间

  八、巩固练习(略)

  小编为大家提供的高一上学期数学教学计划格式,大家仔细阅读了吗?最后祝同学们学习进步。

高一上数学教学计划4

  一、教学目标

  1.知识与技能目标

  (1). 掌握集合的两种表示方法;能够按照指定的方法表示一些集合.

  (2).发展学生运用数学语言的能力;培养学生分析、比较、归纳的逻辑思维能力.

  2.过程与方法目标

  ①通过实例抽象概括集合的共同特征,从而引出集合的概念是本节课的重要任务之一。因此教学时不仅要关注集合的基本知识的学习,同时还要关注学生抽象概括能力的培养。

  ②教学过程中应努力创造培养学生的思维能力,提高学生理解掌握概念的能力,训练学生分析问题和处理问题的能力

  情感态度与价值观目标 感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯;学习从数学的角度认识世界;通过合作学习增强合作意识;培养数学的特有文化——简洁精炼,体会从感性到理性的思维过程。

  2、教材分析 本节课位于我校现行教材≤中等职业教育国家规划教材≥数学第一章第一节≤集合≥的第二课时,这节课主要学习集合的表示方法。

  集合语言是现代数学的基本语言。通过集合语言的学习,有利于学生简明准确地表达学习的数学内容。集合的初步知识是学生学习、掌握和使用数学语言的基础,是中职数学学习的出发点。

  在中职数学中,这部分知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础。例如,在后续学习的集合的相关内容和第二章≤不等式≥、

  第三章≤函数≥,在代数中用到的有数集、解集等;在几何中用到的有点集,都离不开集合。也是研究数学问题不可缺少的工具。这一课在本章的学习有很重要的意义,也是本章后续学习和后续学习的基础,起到承上启下的作用。

  3、学情分析

  学生在初中阶段的学习中,虽然已经有了对集合的初步认知,由于中职学生的现状,学生基础比较弱,学习习惯比较差,根据我校的现行教材结合学生的实际情况,为了培养学

  生良好的学习习惯,打好基础,对集合的两种表示方法:列举法和描述法通过讲练结合、不断地巩固练习、提高练习来达到标准要求,鼓励学生理解的基础上记忆的学习方法来学习。

  二、方法与手段

  本节课采用新知识讲授课的教学模式,教学策略为先熟悉再深入,采用启发式、讲练结合等教学方法,并采用多媒体教学手段辅助教学。

  3、教学重难点

  重点:列举法、描述法。

  难点:运用集合的三种常用表示方法正确表示一些简单的集合

  4、教学方法:实例归纳、学生的自主探究、主动参与与教师的引导相结合,充分体现学生在课堂中的主体作用和教师的主导作用。

  5、教学手段:多媒体辅助教学——主要是利用多媒体展示图片来增加学生的学习兴趣和对集合知识的直观理解。

  6、教学思路:

  7、教学过程

  7.1创设情境,引入课题

  【活动】多媒体展示:1、草原一群大象在缓步走来。

  2、蓝蓝的天空中,一群鸟在飞翔

  3、一群学生在一起玩。

  引导学生举出一些类似的例子问题

  在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是一群大象、一群鸟、一群学生)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体。

  【设计意图】通过多媒体展示,极大地调动起了学生的积极性,吸引学生的注意力,设置轻松的学习气氛。

  7.2步步探索,形成概念

  【活动1】观察下列对象:

  ①1~20以内的所有质数;

  ②我国从1991—20xx年的13年内所发射的所有人造卫星

  ③金星汽车厂20xx年生产的所有汽车;

  ④20xx年1月1日之前与我国建立外交关系的所有国家;

  ⑤所有的正方形;

  ⑥到直线l的距离等于定长d的所有的点;

  ⑦方程x2+3x—2=0的所有实数根;

  ⑧新华中学20xx年9月入学的所有的高一学生。

  师生共同概括8个例子的特征,得出结论,给出集合的含义:把研究对象统称为元素,常用小写字母啊a,b,c….表示,把一些元素组成的总体叫做集合,常用大写字母A,B,C….来表示。

  【设计意图】使学生自己明确集合的含义,培养学生的概括能力。

  【活动2】要求每个学生举出一些集合的例子,选出具有代表性的几个问题,比

  如:

  1)A={1,3},3、5哪个是A的元素?

  2)B={身材较高的人},能否表示成集合?

  3)C={1,1,3}表示是否准确?

  4)D={中国的直辖市},E={北京,上海,天津,重庆}是否表示同一集合?

  5)F={a,b,c}与G={c,b,a}这两个集合是否一样?

  【分析】1)1,3是A的元素,5不是

  2)我们不能准确的规定多少高算是身材较高,即不能确定集合的元素,

  所以B不能表示集合

  3)C中有二个1,因此表达不准确

  4)我们知道E中各元素都是属于中国的直辖市,但中国的直辖市并不 只有这几个,因此不相等。

  5)F和G的元素相同,只不过顺序不同,但还是表示同一个集合

  通过上述分析引导学生自由讨论、探究概括出集合中各种元素的特点,并让学生再举出一些能够构成集合的例子以及不能构成集合的例子,要求说明理由。师生一起得出集合的特征:

  1)确定性:某一个具体对象,它或者是一个给定的'集合的元素,或者不是该集合的元素,两种情况必有一种且只有一种成立.

  2)互异性:同一集合中不应重复出现同一元素.

  3)无序性:集合中的元素没有顺序

  4)集合相等:构成两个集合的元素完全一样

  【设计意图】引导学生自主探究得出集合的特征:确定性、互异性、无序性,集合相等,培养学生的抽象概括能力,同时使学生能更好的了解集合。

  7.3集合与元素的关系

  【问题】高一(4)班里所有学生组成集合A,a是高一(4)班里的同学,b是

  高一(5)班的同学,a、b与A分别有什么关系?

  引导学生阅读教科书中的相关内容,思考上述问题,发表学生自己的看法。 得出结论:①如果a是集合A的元素,就说a属于集合A,记作a∈A。

  ②如果b不是集合A的元素,就说b不属于集合A,记作b?A。

  再让学生举一些例子说明这种关系。

  【设计意图】使学生发挥想象,明确元素与集合的关系。

  【活动】熟记数学中一些常用的数集及其记法

  引导学生回忆数集扩充过程,阅读教科书第3页表格中的内容,认识常用数集记号。

  【设计意图】使学生熟记常用数集的记号,以免日后做题时混淆。

  7.4集合的表示方法

  【问题】由以上内容我们可以知道用自然语言可以描述一个集合,那么有没有其他方式表示集合呢?

  7.4.1集合的列举法表示

  【活动】尝试用列举法第4页例1中的集合:

  1)小于10的所有自然数组成的集合;

  2)方程x2?x的所有实数根组成的集合;

  3)由1到20以内的所有素数组成的集合;

  并思考列举法的特点。

  引导学生阅读教科书,自主学习列举法,得出答案:

  1)A={0,1,2,3,4,5,6,7,8,9}

  2)A={0,1}

  3)A={2,3,5,7,11,13,17,19}

  通过上述讲解请同学说说列举法的特点:

  1)用花括号{}把元素括起来

  2)集合的元素可以具体一一列出

  【设计意图】使学生学习基本了解用列举法表示集合的方法,并了解列举法的特点。

  7.4.2集合的描述法表示

  【活动1】提出教科书中的思考题:

  1)你能用自然语言描述集合{2,4,6,8}吗?

  2)你能用列举法表示不等式x—7<3的解集吗?

  学生讨论,师生总结:

  1)从2开始到8的所有偶数组成的集合

  2)这个集合中的元素不能一一列出,因此不可以用列举法表示

  引导学生思考、讨论用列举法表示相应集合的困难,激发学生学习描述法的积极性。

  引导学生阅读教科书中描述法的相关内容,让学生讨论交流,归纳描述法的特点。

  例如2)可以用描述法表示为:A={x?R|x<10}

  【设计意图】使学生体会用描述法表示集合的必要性,会用描述法表示集合。

  【活动2】引导学生完成第5页例2

  1) 方程x2?2?0的所有实数根组成的集合

  2) 由大于10小于20的所有整数组成的集合

  讨论应当如何根据问题选择适当的集合表示法。学生回答,老师进行总结:

  1)描述法:A={ x?R|x2?2?0}

  列举法:

  2)描述法:A={ x?Z|10

  列举法:A={11,12,13,14,15,16,17,18,19}

  【设计意图】使学生掌握好两种表示法各自的特点,根据题目灵活选择。

  7.5课堂小结,学习反思

  【问题】1)集合与元素的含义?

  2)集合的特点?

  3)集合的不同表示方法

  引导学生整理概括这一节课所学的知识

  【设计意图】归纳整理知识,形成知识网络,并培养学生自主对所学知识进行总结的能力。

  8、作业布置,巩固新知

  课后作业:习题1.1A组第4题

  课后思考作业: ①结合实例,试比较用自然语言、列举法和描述法表示集合时各自的特点和适用的对象。

  ②自己举出几个集合的例子,并分别用自然语言、列举法和描述法表示出来。

  9、板书设计

  1.1.1集合的含义与表示

  1、元素的含义:把研究对象统称为元素

  2、集合的含义:一些元素组成的总体。

  3、集合元素的三个特性:确定性,互异性,无序性,集合相等

  4、元素与集合的关系:a?A,a?A

  5、常用数集与记法

  6、列举法

  7、描述法

  8、课堂小结

高一上数学教学计划5

  进一步深化教育教学改革,树立全新的语文教育观,构建全新而科学的教学目标体系、数学网特制定高一上学期数学函数的基本性质教学计划模板。

  教材分析

  函数性质是函数的固有属性,是认识函数的重要手段,而函数性质可以由函数图象直观的反应出来,因此,函数各个性质的学习要从特殊的、已知的图象入手,抽象出此类函数的共同特征,并用数学语言来定义叙述。基于此,本节的概念课教学要注重引导,注重知识的形成过程,习题课教学以具体技巧、方法作为辅助练习。

  学情分析

  学生对函数概念重新认识之后,可以结合初中学过的简单函数的图象对函数性质进行抽象定义。另外,为了方便学生做题及熟悉函数性质,还需要补充一些函数图象的知识,例如平移、二次函数图象、含绝对值函数的图象、反比例函数及其变形的函数图象。总之,本节课的教学要从学生认知实际出发,坚持从图象中来到图象中去的原则。

  教学建议

  以图象作为切入点进行概念课教学,引导学生对概念的形成有一个清晰的认识,尤其是概念中的部分关键词要做深入讲解,用函数图象指导学生做题。

 教学目标

  知识与技能

  (1)能理解函数单调性、最值、奇偶性的`图形特征

  (2)会用单调性定义证明具体函数的单调性;会求函数的最值;会用奇偶性定义判断函数奇偶性

  (3)单调性与奇偶性的综合题

  (4)培养学生观察、归纳、推理的抽象思维能力

  过程与方法

  (1)从观察具体函数的图像特征入手,结合相应问题引导学生一步步转化到用数学语言形式化的建立相关概念

  (2)渗透数形结合的数学思想进行习题课教学

  情感、态度与价值观

  (1)使学生学会认识事物的一般规律:从特殊到一般,抽象归纳

  (2)培养学生严密的逻辑思维能力,进一步规范学生用数学语言、数学符号进行表达

  课时安排

  (1)概念课:单调性2课时,最值1课时,奇偶性1课时

  (2)习题课:5课时

高一上数学教学计划6

  数学是一切科学的基础,可以说人类的每一次重大进步背后都是数学在后面强有力的支撑。以下是小编为大家整理的高一上学期数学教学计划,希望可以解决您所遇到的相关问题。

  一、指导思想:

  使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

  1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2.提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和做出判断。

  5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  二、教材特点:

  我们所使用的'教材是人教版《普通高中课程标准实验教科书〃数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:

  1.亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

  2.问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

  3.科学性与思想性:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

  4.时代性与应用性:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

  三、教法分析:

  1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。

  2.通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

  3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

  四、学情分析:

  高一学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

  五、教学措施:

  1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

  2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

  3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辩证唯物主义教育。

  4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

  5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

  6、重视数学应用意识及应用能力的培养。

  最后,希望小编整理的高一上学期数学教学计划对您有所帮助,祝同学们学习进步。

高一上数学教学计划7

  数学是利用符号语言研究数量、结构、变化以及空间模型等概念的一门学科。数学网为大家推荐了高一数学教学计划,请大家仔细阅读,希望你喜欢。

  一.学情分析

   秋季起,湖南省高中新课程实验工作全面启动,我校选用的数学教材是由人民教育出版社、课程教材研究所、中学数学课程教材研究开发中心编著的A版教材。与旧教材作一比较,发现本套教材是在继承我国高中数学教科书编写优良传统和基础上积极创新,充分体现了数学的美学价值和人文精神。我校是一所普通的高中,在重点高中和私立学校扩招的影响下,我校新生的素质可想而知了。学生基础差,学习兴趣不大,怎样调动学生的学习兴趣是本期在教学中要解决的重要问题。

  二.教材分析

   本教材有下列几个特点:

  1、更加注重强调数学知识的实际背景和应用,使教材具有很强的亲和力,即以生动活泼的呈现方式,激发学生的兴趣和美感,使学生产生对数学的亲切感,引发学生看个究竟的冲动,使学生兴趣盎然地投入学习。

  2. 以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神,体现了问题性,本套教材的一个很大特点是每一章都可以看到观察思考探索以及用问号性图标呈现的边空等栏目,利用这些栏目,在知识形过过程的关键点上,在运用数学思想方法产生解决问题策略的关节点上,在数学知识之间联系的联结点上,在数学问题变式的发散点上,在学生思维的最近发展区内,提出恰当的、对学生数学思维有适度启发的问题,以引导学生的数学探究活动,切实转变学生的学习方式。

  3. 信息技术是一种强有力的认识工具,在教材的`编写过程体现了积极探索数学课程与信息技术的整合,帮助学生利用信息技术的力量,对数学的本质作进一步的理解。

  4.关注学生数学发展的不同需求,为不同学生提供不同的发展空间, 促进学生个性和潜能的发展提供了很好的平台。例如教材通过设置观察与猜想、阅读与思考、探究与发现等栏目,一方面为学生提供了一些关于探究性、拓展性、思想性、时代性和应用性的选学材料,拓展学生的数学活动空间和扩大学生的数学知识面,另一方面也体现了数学的科学价值,反映了数学在推动其他科学和整个文化进步中的作用。

  5. 新教材注重数学史渗透,特别是注重介绍我国对数学的贡献,充分体现数学的人文价值,科学价值和文化价值,激发了学生的爱国主义情感和民族自豪感。

  三. 教学任务与目的

   1.了解集合的含义与表示,理解集合间的关系和运算,感受集合语言的意义和作用。进一步体会函数是描述变量之间的依赖关系的重要数学模型,会用集合与对应的语言描述函数,体会对应关系在刻画函数概念中的作用。了解函数的构成要素,会求简单函数定义域和值域,会根据实际情境的不同需要选择恰当的方法表示函数。通过已学过的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性的含义,会用函数图象理解和研究函数的性质。根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼兹、欧拉等)的有关资料,了解函数概念的发展历程。

  2. 了解指数函数模型的实际背景。理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用。通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。知道指数函数y=ax 与对数函数y=loga x互为反函数(a 0, a1)。通过实例,了解幂函数的概念;结合函数y=x, y=x2, y=x3, y=1/x, y=x1/2 的图象,了解它们的变化情况。

  3. 结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系.根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法.利用计算工具,比较指数函数、对数函数以及幂函数间的增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.收集一些社会生活中普遍使用的函数模型,了解函数模型的广泛应用。

  4. 利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图。通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式。完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。

  5以长方体为载体,使学生在直观感知的基础上,认识空间中点、直线、平面之间的位置关系。通过对大量图形的观察、实验、操作和说理,使学生进一步了解平行、垂直判定方法以及基本性质。学会准确地使用数学语言表述几何对象的位置关系,体验公理化思想,培养逻辑思维能力,并用来解决一些简单的推理论证及应用问题.

  6. 在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。能根据斜率判定两条直线平行或垂直。根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系。能用解方程组的方法求两直线的交点坐标。探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。

  四.教学措施和活动

   1. 加强集体备课与个人学习,个人要加强自我学习和养成解数学题的习惯,提高个人专业素养和教学基本功。

  2、注重培养学生自主学习的能力,转变学生学习数学的方式。学生是学习和发展的主人,教学中要体现学生的主体地位,增强学生的自我学习,自我教育与发展的意识和能力。改善学生的学习方式是高中数学新课程追求的基本理念。

  3、了解新课程教学基本程序,掌握新课程教学常规策略,立足于提高课堂教学效率。

  4、与学生多沟通、多交流,真正成为学生的良师益友。

  5、要深刻理解领悟新教材的立意进行教学,而不要盲目地加深难度。

  五.教学时间大致安排

   集合与函数概念 13

  基本初等函数 15

  函数的应用 8

  空间几何体 8

  点、直线、平面的位置关系 10

  直线与方程 9

  圆与方程 9

高一上数学教学计划8

  (一)教学目标

  1.知识与技能

  (1)理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.

  (2)能使用Venn图表示集合的并集和交集运算结果,体会直观图对理解抽象概念的作用。

  (3)掌握的关的术语和符号,并会用它们正确进行集合的并集与交集运算。

  2.过程与方法

  通过对实例的分析、思考,获得并集与交集运算的法则,感知并集和交集运算的实质与内涵,增强学生发现问题,研究问题的创新意识和能力.

  3.情感、态度与价值观

  通过集合的并集与交集运算法则的发现、完善,增强学生运用数学知识和数学思想认识客观事物,发现客观规律的兴趣与能力,从而体会数学的应用价值.

  (二)教学重点与难点

  重点:交集、并集运算的含义,识记与运用.

  难点:弄清交集、并集的含义,认识符号之间的区别与联系

  (三)教学方法

  在思考中感知知识,在合作交流中形成知识,在独立钻研和探究中提升思维能力,尝试实践与交流相结合.

  (四)教学过程

  教学环节 教学内容 师生互动 设计意图

  提出问题引入新知 思考:观察下列各组集合,联想实数加法运算,探究集合能否进行类似“加法”运算.

  (1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}

  (2)A = {x | x是有理数},

  B = {x | x是无理数},

  C = {x | x是实数}.

  师:两数存在大小关系,两集合存在包含、相等关系;实数能进行加减运算,探究集合是否有相应运算.

  生:集合A与B的元素合并构成C.

  师:由集合A、B元素组合为C,这种形式的组合就是为集合的并集运算. 生疑析疑,

  导入新知

  形成

  概念

  思考:并集运算.

  集合C是由所有属于集合A或属于集合B的元素组成的,称C为A和B的并集.

  定义:由所有属于集合A或集合B的元素组成的集合. 称为集合A与B的并集;记作:A∪B;读作A并B,即A∪B = {x | x∈A,或x∈B},Venn图表示为:

  师:请同学们将上述两组实例的共同规律用数学语言表达出来.

  学生合作交流:归纳→回答→补充或修正→完善→得出并集的定义. 在老师指导下,学生通过合作交流,探究问题共性,感知并集概念,从而初步理解并集的含义.

  应用举例 例1 设A = {4,5,6,8},B = {3,5,7,8},求A∪B.

  例2 设集合A = {x | –1

  例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.

  例2解:A∪B = {x |–1

  师:求并集时,两集合的相同元素如何在并集中表示.

  生:遵循集合元素的互异性.

  师:涉及不等式型集合问题.

  注意利用数轴,运用数形结合思想求解.

  生:在数轴上画出两集合,然后合并所有区间. 同时注意集合元素的互异性. 学生尝试求解,老师适时适当指导,评析.

  固化概念

  提升能力

  探究性质 ①A∪A = A, ②A∪ = A,

  ③A∪B = B∪A,

  ④ ∪B, ∪B.

  老师要求学生对性质进行合理解释. 培养学生数学思维能力.

  形成概念 自学提要:

  ①由两集合的所有元素合并可得两集合的并集,而由两集合的公共元素组成的集合又会是两集合的一种怎样的运算?

  ②交集运算具有的运算性质呢?

  交集的定义.

  由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集;记作A∩B,读作A交B.

  即A∩B = {x | x∈A且x∈B}

  Venn图表示

  老师给出自学提要,学生在老师的.引导下自我学习交集知识,自我体会交集运算的含义. 并总结交集的性质.

  生:①A∩A = A;

  ②A∩ = ;

  ③A∩B = B∩A;

  ④A∩ ,A∩ .

  师:适当阐述上述性质.

  自学辅导,合作交流,探究交集运算. 培养学生的自学能力,为终身发展培养基本素质.

  应用举例 例1 (1)A = {2,4,6,8,10},

  B = {3,5,8,12},C = {8}.

  (2)新华中学开运动会,设

  A = {x | x是新华中学高一年级参加百米赛跑的同学},

  B = {x | x是新华中学高一年级参加跳高比赛的同学},求A∩B.

  例2 设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1,l2的位置关系. 学生上台板演,老师点评、总结.

  例1 解:(1)∵A∩B = {8},

  ∴A∩B = C.

  (2)A∩B就是新华中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组成的集合. 所以,A∩B = {x | x是新华中学高一年级既参加百米赛跑又参加跳高比赛的同学}.

  例2 解:平面内直线l1,l2可能有三种位置关系,即相交于一点,平行或重合.

  (1)直线l1,l2相交于一点P可表示为 L1∩L2 = {点P};

  (2)直线l1,l2平行可表示为

  L1∩L2 = ;

  (3)直线l1,l2重合可表示为

  L1∩L2 = L1 = L2. 提升学生的动手实践能力.

  归纳总结 并集:A∪B = {x | x∈A或x∈B}

  交集:A∩B = {x | x∈A且x∈B}

  性质:①A∩A = A,A∪A = A,

  ②A∩ = ,A∪ = A,

  ③A∩B = B∩A,A∪B = B∪A. 学生合作交流:回顾→反思→总理→小结

  老师点评、阐述 归纳知识、构建知识网络

  课后作业 1.1第三课时 习案 学生独立完成 巩固知识,提升能力,反思升华

  备选例题

  例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.

  【解析】法一:∵A∩B = {–2},∴–2∈B,

  ∴a – 1 = –2或a + 1 = –2,

  解得a = –1或a = –3,

  当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.

  当a = –3时,A = {–1,10,6},A不合要求,a = –3舍去

  ∴a = –1.

  法二:∵A∩B = {–2},∴–2∈A,

  又∵a2 + 1≥1,∴a2 – 3 = –2,

  解得a =±1,

  当a = 1时,A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.

  当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.

  例2 集合A = {x | –1

  (1)若A∩B = ,求a的取值范围;

  (2)若A∪B = {x | x<1},求a的取值范围.

  【解析】(1)如下图所示:A = {x | –1

  ∴数轴上点x = a在x = – 1左侧.

  ∴a≤–1.

  (2)如右图所示:A = {x | –1

  ∴数轴上点x = a在x = –1和x = 1之间.

  ∴–1

  例3 已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何实数时,A∩B 与A∩C = 同时成立?

  【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.

  由A∩B 和A∩C = 同时成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 将3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.

  当a = 5时,A = {x | x2 – 5x + 6 = 0} = {2,3},此时A∩C = {2},与题设A∩C = 相矛盾,故不适合.

  当a = –2时,A = {x | x2 + 2x – 15 = 0} = {3,5},此时A∩B 与A∩C = ,同时成立,∴满足条件的实数a = –2.

  例4 设集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.

  【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.

  当x = 3时,A = {9,5,– 4},B = {–2,–2,9},B中元素违背了互异性,舍去.

  当x = –3时,A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}满足题意,故A∪B = {–7,– 4,–8,4,9}.

  当x = 5时,A = {25,9,– 4},B = {0,– 4,9},此时A∩B = {– 4,9}与A∩B = {9}矛盾,故舍去.

  综上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.

高一上数学教学计划9

  一、设计理念

  新课标指出:学生的数学学习活动不应只是接受、记忆、模仿、练习,教师应引导学生自主探究、合作学习、动手操作、阅读自学,应注重提升学生的数学思维能力,注重发展学生的数学应用意识。

  二、教材分析

  本节课选自人教版《普通高中课程标准实验教课书》必修1,第一章1.1.2集合间的基本关系。集合是数学的基本和重要语言之一,在数学以及其他的领域都有着广泛的应用,用集合及对应的语言来描述函数,是高中阶段的一个难点也是重点,因此集合语言作为一种研究工具,它的学习非常重要。本节内容主要是集合间基本关系的学习,重在让学生类比实数间的关系,来进行探究,同时培养学生用数学符号语言,图形语言进行交流的能力,让学生在直观的基础上,理解抽象的概念,同时它也是后续学习集合运算的知识储备,因此有着至关重要的作用。

  三、学情分析

  【年龄特点】:

  假设本次的授课对象是普通高中高一学生,高一的学生求知欲强,精力旺盛,思维活跃,已经具备了一定的观察、分析、归纳能力,能够很好的配合教师开展教学活动。

  【认知优点】

  一方面学生已经学习了集合的概念,初步掌握了集合的三种表示法,对于本节课的'学习有利一定的认知基础。

  【学习难点】

  但是,本节课这种类比实数关系研究集合间的关系,这种类比学习对于学生来说还有一定的难度。

  四、教学目标

  ? 知识与技能:

  1. 理解子集、V图、真子集、空集的概念。

  2. 掌握用数学符号语言以及V图语言表示集合间的基本关系。

  3. 能够区分集合间的包含关系与元素与集合的属于关系。

  ? 过程与方法:

  1. 通过类比实数间的关系,研究集合间的关系,培养学生类比、观察、

  分析、归纳的能力。

  2. 培养学生用数学符号语言、图形语言进行交流的能力。

  ? 情感态度与价值观:

  1.激发学生学习的兴趣,图形、符号所带来的魅力。

  2.感悟数学知识间的联系,养成良好的思维习惯及数学品质。

  五、教学重、难点

  重点:

  集合间基本关系。

  难点:

  类比实数间的关系研究集合间的关系。

  六、教学手段

  PPT辅助教学

  七、教法、学法

  ? 教法:

  探究式教学、讲练式教学

  遵循“教师主导作用与学生主体地位相结合的”教学规律,引导学生自主探究,合作学习,在教学中引导学生类比实数间关系,来研究集合间的关系,降低了学生学习的难度,同时也激发了学生学习的兴趣,充分体现了以学生为本的教学思想。

  ? 学法:

  自主探究、类比学习、合作交流

  教师的“教”其本质是为了“不教”,教师除了让学生获得知识,提高解题能力,还应该让学生学会学习,乐于学习,充分体现“以学定教”的教学理念。通过引导学生类比学习,同学间的合作交流,让学生更好的学习集合的知识。

  八、课型、课时

  课型:新授课

  课时:一课时

  九、教学过程

  (一)教学流程图

  (二)教学详细过程

  1..回顾就知,引出新知

  问题一:实数间有相等、不等的关系,例如5=5,3﹤7,那么集合之间会有什么关系呢?

  2.合作交流,探究新知

  问题二:大家来仔细观察下面几个例子,你能发现集合间的关系吗?

  (1)A={1,2,3},B={1,2,3,4,5};

  (2)设A为新华中学高一(2)班女生的全体组成集合;B为这个班学生的全体组成集合;

  (3)设C={x∣x是两条边相等的三角形},D={x∣x是等腰三角形}

  【师生活动】:学生观察例子后,得出结论,在(1)中集合A中的任何一个元素都是集合B中的元素,教师总结,这时我们说集合A与集合B 有包含关系。(2)中的集合也是这种关一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两集合有包含关系,称集合A为集合B 的子集,记作:A?B(B?A),读作A含于B或者B包含A.

  在数学中我们经常用平面上封闭的曲线内部代表集合,这样上述集合A与集合B的包含关系,可以用下图来表示:

  问题三:你能举出几个集合,并说出它们之间的包含关系吗?

  【师生活动】:学生自己举出些例子,并加以说明,教师对学生的回答进行补充。

  问题四:对于题目中的第3小题中的集合,你有什么发现吗?

  【师生活动1】:在(3)由于两边相等的三角形是等腰三角形,因此集合C,D都是所有等腰三角形的集合,集合C中任意一个元素都是集合D的元素 ,同时集合D任意一个元素都是集合C的元素,因此集合C与集合D相等,记作:C=D。

  用集合的概念对相等做进一步的描述:

  如果集合A是集合B 子集,且集合B是集合A的子集,此时集合A与集合B的元素一样,因此集合A与集合B 相等,记作A=B。

  强调:如果集合A?B,但存在元素x∈B, 且x?A,我们称集合A是集合B的真子集,记作:A?B

  【师生活动2】:教师引导学生以(1)为例,指出A?B,但4∈B, 4?A,教师总结所以集合A是集合B的真子集。

  【师生活动】?,并规定空集是任何集合的

  4.思维拓展,讨论新知

  问题六:包含关系{a}?A与属于关系a∈A有什么区别?请大家用具体例子来说明

  【师生活动1】:学生以(1)为例{1,2}?A,2∈A,说明前者是集合之间的关系,后者是

  问题七:经过以上集合之间关系的学习,你有什么结论?

  【师生活动】:师生讨论得出结论:

  (1)任何一个集合都是它本身的子集,即A?A

  5.练习反馈,培养能力

  例1写出集合{a,b}的所有子集,并指出哪些是真子集

  例2用适当的符号填空

  (1)a_{a,b,c}

  (2){0,1}_N

  (3){2,1}_{X∣X2-3X+2=0}

  6.课堂小结,布置作业

  这节课你学到了哪些知识?

  小结 知识上:

  能力上:

  情感上:

  作业:必做题:P8,3

  思考题:实数间有运算,那集合呢?

  十、板书设计

  十一、教学反思

高一上数学教学计划10

  【内容】建立函数模型刻画现实问题

  【内容解析】函数模型本身就来源于现实,并用于解决实际问题,所以本节内容是通过对展现的实例进行分析与探究使得学生能有更多的机会从实际问题中发现或建立数学模型,并能体会数学在实际问题中的应用价值,同时本课题是学生在初中学习了函数的图象和性质的基础上刚上高中进行的一节探究式课堂教学。在一个具体问题的解决过程中,学生可以从理解知识升华到熟练应用知识,使他们能辩证地看待知识理解与知识应用间的关系,与所学的函数知识前后紧紧相扣,相辅相成。;另一方面,函数模型本身就是与实际问题结合在一起的,空讲理论只能导致学生不能真正理解函数模型的应用和在应用过程中函数模型的建立与解决问题的过程,而从简单、典型、学生熟悉的函数模型中挖掘、提炼出来的'思想和方法,更容易被学生接受。同时,应尽量让学生在简单的实例中学习并感受函数模型的选择与建立。因为建立函数模型离不开函数的图象及数据表格,所以会有一定量的原始数据的处理,这可能会用到电脑和计算器以及图形工具,而我们的教学应更加关注的是通过实际问题的分析过程来选择适当的函数模型和函数模型的构建过程。在这个过程中,要使学生着重体会的是模型的建立,同时体会模型建立的可操作性、有效性等特点,学习模型的建立以解决实际问题,培养发展有条理的思维和表达能力,提高逻辑思维能力。

  【教学目标】

  (1)体现建立函数模型刻画现实问题的基本过程.

  (2)了解函数模型的广泛应用

  (3)通过学生进行操作和探究提高学生发现问题、分析问题、解决实际问题的能力

  (4)提高学生探究学习新知识的兴趣,培养学生,勇于探索的科学态度

  【重点】了解并建立函数模型刻画现实问题的基本过程,了解函数模型的广泛应用

  【难点】建立函数模型刻画现实问题中数据的处理

  【教学目标解析】通过对全班学生中抽样得出的样本进行分析和处理,,使学生认识到本节课的重点是利用函数建模刻画现实问题的基本过程和提高解决实际问题的能力,在引导突出重点的同时能过学生的小组合作探究来突破本节课的难点,这样,在小组合作学习与探究过程中实现教学目标中对知识和能力的要求(目标1,2,3)在如何用函数建模刻画现实问题的基本过程中让学生亲身体验函数应用的广泛性,同时提高学生探究学习新知识的兴趣,培养学生主动参与、自主学习、勇于探索的科学态度,从而实现教学目标中的德育目标(目标4)

  【学生学习中预期的问题及解决方案预设】

  ①描点的规范性;②实际操作的速度;③解析式的计算速度④计算结束后不进行检验

  针对上述可能出现的问题,我在课前课上处理是,课前给学生准备一些坐标纸来提高描点的规范性,同时让学生使用计算器利用小组讨论来进行多人合作以期提高相应计算速度,在解析式得出后引导学生得出的标准应该是只有一个的较好的,不能有很多的标准,这样以期引导学生想到对结果进行筛选从而引出检验.

  【教学用具】多媒体辅助教学(ppt、计算机)。

【高一上数学教学计划】相关文章:

高一上数学教学计划10-02

高一上学期数学教学计划05-19

高一上学期数学教学计划5篇10-31

高一上学期数学教学计划合集六篇08-02

高一上册物理教学计划09-13

高一上学期物理教学计划10-02

高一上册物理教学计划通用11-03

高一上学期地理教学计划06-24

精选高一上册物理教学计划三篇12-08