数学中考知识点总结
总结是指对某一阶段的工作、学习或思想中的经验或情况进行分析研究,做出带有规律性结论的书面材料,它可以使我们更有效率,不如静下心来好好写写总结吧。那么我们该怎么去写总结呢?下面是小编帮大家整理的数学中考知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。
数学中考知识点总结1
1、随机事件
必然事件:在一定条件下,一定会发生的事件称为必然事件。
不可能事件:在一定条件下,一定不会发生的事件称为不可能事件。
必然事件和不可能事件统称确定性事件。
随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件。
2、概率
(1)概率的性质:P(必然事件)=1;P(不可能事件)=0;0
(2)一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包括其中的m种结果,那么事件A发生的概率。
1、能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果,了解事件的概率。
2、知道通过大量的重复试验,可以用频率来估计概率。
1、必然事件、不可能事件、随机事件的辨析。
2、简单事件的概率求解。
3、用频率估计概率。
4、用概率解决实际问题。
5、概率与其它知识的综合运用。
1、下列事件中是必然事件的是( )
A、拉萨明日刮西北风 B、抛掷一枚硬币,落地后正面朝上
C、当x是实数时,x2≥0 D、三角形内角和是360°
2、下列说法正确的是( )
A、拉萨市“明天降雨的概率是75%”表示明天有75%的时间会降雨
B、随机抛掷一枚均匀的硬币,落地后正面一定朝上
C、在一次抽奖活动中,“中奖的概率是1%”表示抽奖100次就一定会中奖
D、在平面内,平行四边形的两条对角线一定相交
3、下列事件是不可能事件的是( )
A、一个角和它的余角的和是90°
B、接连掷10次骰子都是6点朝上
C、一个有理数和它的倒数之和等于0
D、一个有理数小于它的倒数
4、下列事件中是必然事件的是( )
A、从一个装有蓝、白两色球的缸里摸出一个球,摸出的球是白球
B、扎西的自行车轮胎被钉子扎坏
C、卓玛期末考试数学成绩一定得满分
D、将菜籽油滴入水中,菜籽油会浮在水面上
5、下列说法中,正确的是( )
A、生活中,如果一个事件不是不可能事件,那么它就必然发生
B、生活中,如果一个事件可能发生,那么它就是必然事件
C、生活中,如果一个事件发生的可能性很大,那么它也可能不发生
D、生活中,如果一个事件不是必然事件,那么它就不可能发生
6、同时投掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数。下列事件中是不可能事件的`是( )
A、点数之和为12 B、点数之和小于3
C、点数之和大于4且小于8 D、点数之和为13
7、某个事件发生的概率是,这意味着( )
A、在两次重复实验中该事件必有一次发生 B、在一次实验中没有发生,下次肯定发生
C、在一次实验中已经发生,下次肯定不发生 D、每次实验中事件发生的可能性是50%
8、在生产的100件产品中,有95件正品,5件次品。从中任抽一件是次品的概率为( )
A、0.05 B、0.5 C、0.95 D、95
9、有50个型号相同的乒乓球,其中一等品40个,二等品8个,三等品2个,现从中任取一个乒乓球,抽到一等品的概率是( )
A、 B、 C、 D、
10、卓玛的文具盒中有两支蜡笔:一支红色的、一支绿色的;三支水彩笔:分别是黄色、红色、黑色,任意拿出一支蜡笔和一支水彩笔,正好都是红色的概率是( )
A、 B、 C、 D、
11、某灯泡厂的一次质量检查中,从20xx个灯泡中抽查了100个,其中有6个不合格,那么在这20xx个灯泡中,估计有 个灯泡不合格。
12、随意安排甲、乙、丙3人在3天节日中值班,每人值班1天。
(1)这3人的值班顺序共有多少种不同的排列方法?
(2)其中甲排在乙之前的排法有多少种?
(3)甲排在乙之前的概率是多少?
学数学的窍门有哪些
学数学最重要的就是解题能力。要想会做数学题目,就要有大量的练习积累,知道各类型题目的解题步骤与方法,题目做多了就有手感了,再拿出类似的题目才会有解题思路。
其次是学会预习。解题思路不是直接就有的,也并非通过做几道简单的题目就能轻易获得,而是在预习过程中不断积累出来的。因此,预习在数学学习过程中起到了非常重要的作用。预习一方面能够让大家提前对数学知识有所了解,另一方面能够培养数学独立学习能力。
学数学必须多做题。理解了数学基本定义和知识点以后,就需要通过做对应习题去巩固知识,多做多练才能更好地掌握所学知识,学数学也是看花容易绣花难的,只有真正动手去做题、经历了实操过程能学会。
学好数学有什么技巧
1、有良好的学习兴趣
(1)课前预习,对所学知识产生疑问,产生好奇心。
(2)听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。
2、建立良好的学习数学习惯
习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。
数学中考知识点总结2
一、 重要概念
1。数的分类及概念
数系表:
说明:“分类”的原则:1)相称(不重、不漏)
2)有标准
2。非负数:正实数与零的统称。(表为:x≥0)
常见的非负数有:
性质:若干个非负数的和为0,则每个非负担数均为0。
3。倒数: ①定义及表示法
②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a1时,1/a1;D。积为1。
4。相反数: ①定义及表示法
②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C。和为0,商为-1。
5。数轴:①定义(“三要素”)
②作用:A。直观地比较实数的大小;B。明确体现绝对值意义;C。建立点与实数的一一对应关系。
6。奇数、偶数、质数、合数(正整数—自然数)
定义及表示:
奇数:2n-1
偶数:2n(n为自然数)
7。绝对值:①定义(两种):
代数定义:
几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的`距离。
②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
数学中考知识点总结3
中考数学知识点:分式混合运算法则
分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简.
分式混合运算法则:
分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);
乘法进行化简,因式分解在先,分子分母相约,然后再行运算;
加减分母需同,分母化积关键;找出最简公分母,通分不是很难;
变号必须两处,结果要求最简.
中考数学二次根式的加减法知识点总结
二次根式的加减法
知识点1:同类二次根式
(Ⅰ)几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式,如这样的二次根式都是同类二次根式。
(Ⅱ)判断同类二次根式的方法:(1)首先将不是最简形式的二次根式化为最简二次根式以后,再看被开方数是否相同。(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关。
知识点2:合并同类二次根式的方法
合并同类二次根式的`理论依据是逆用乘法对加法的分配律,合并同类二次根式,只把它们的系数相加,根指数和被开方数都不变,不是同类二次根式的不能合并。
知识点3:二次根式的加减法则
二次根式相加减先把各个二次根式化成最简二次根式,再把同类二次根式合并,合并的方法为系数相加,根式不变。
知识点4:二次根式的混合运算方法和顺序
运算方法是利用加、减、乘、除法则以及与多项式乘法类似法则进行混合运算。运算的顺序是先乘方,后乘除,最后加减,有括号的先算括号内的。
知识点5:二次根式的加减法则与乘除法则的区别
乘除法中,系数相乘,被开方数相乘,与两根式是否是同类根式无关,加减法中,系数相加,被开方数不变而且两根式须是同类最简根式。
中考数学知识点:直角三角形
★重点★解直角三角形
☆内容提要☆
一、三角函数
1.定义:在Rt△ABC中,∠C=Rt∠,则sinA=;cosA=;tgA=;ctgA=.
2.特殊角的三角函数值:
0°30°45°60°90°
sinα
cosα
tgα/
ctgα/
3.互余两角的三角函数关系:sin(90°-α)=cosα;…
4.三角函数值随角度变化的关系
5.查三角函数表
二、解直角三角形
1.定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
2.依据:①边的关系:
②角的关系:A+B=90°
③边角关系:三角函数的定义。
注意:尽量避免使用中间数据和除法。
三、对实际问题的处理
1.俯、仰角:2.方位角、象限角:3.坡度:
4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。
数学中考知识点总结4
一、重要概念
1、数的分类及概念
数系表:
说明:“分类”的原则:1)相称(不重、不漏)
2)有标准
2、非负数:正实数与零的统称。(表为:x≥0)
常见的非负数有:
性质:若干个非负数的`和为0,则每个非负担数均为0。
3、倒数:①定义及表示法
②性质:≠1/a(a≠±1);中,a≠0;a1时,1/a1;D。积为1。
4、相反数:①定义及表示法
②性质:≠0时,a≠—a;与—a在数轴上的位置;C。和为0,商为—1。
5、数轴:①定义(“三要素”)
②作用:A。直观地比较实数的大小;B。明确体现绝对值意义;C。建立点与实数的一一对应关系。
6、奇数、偶数、质数、合数(正整数—自然数)
定义及表示:
奇数:2n—1
偶数:2n(n为自然数)
7、绝对值:①定义(两种):
代数定义:
几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
数学中考知识点总结5
1、解直角三角形
锐角三角函数
锐角a的正弦、余弦和正切统称∠a的三角函数。
如果∠a是Rt△ABC的一个锐角,则有
锐角三角函数的计算
解直角三角形
在直角三角形中,由已知的一些边、角,求出另一些边、角的过程,叫做解直角三角形。
2、直线与圆的位置关系
直线与圆的位置关系
当直线与圆有两个公共点时,叫做直线与圆相交;当直线与圆有公共点时,叫做直线与圆相切,公共点叫做切点;当直线与圆没有公共点时,叫做直线与圆相离。
直线与圆的位置关系有以下定理:
直线与圆相切的判定定理:
经过半径的外端并且垂直这条半径的直线是圆的切线。
圆的`切线性质:
经过切点的半径垂直于圆的切线。
切线长定理
从圆外一点作圆的切线,通常我们把圆外这一点到切点间的线段的长叫做切线长。
切线长定理:过圆外一点所作的圆的两条切线长相等。
三角形的内切圆
与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。三角形的内心是三角形的三条角平分线的交点。
3、三视图与表面展开图
投影
物体在光线的照射下,在某个平面内形成的影子叫做投影。光线叫做投影线,投影所在的平面叫做投影面。由平行的投射线所形成的投射叫做平行投影。
可以把太阳光线、探照灯的光线看成平行光线,它们所形成的投影就是平行投影。
简单几何体的三视图
物体在正投影面上的正投影叫做主视图,在水平投影面上的正投影叫做俯视图,在侧投影面上的正投影叫做左视图。
主视图、左视图和俯视图合称三视图。
产生主视图的投影线方向也叫做主视方向。
由三视图描述几何体
三视图不仅反映了物体的形状,而且反映了各个方向的尺寸大小。
简单几何体的表面展开图
将几何体沿着某些棱“剪开”,并使各个面连在一起,铺平所得到的平面图形称为几何体的表面展开图。
圆柱可以看做由一个矩形ABCD绕它的一条边BC旋转一周,其余各边所成的面围成的几何体。AB、CD旋转所成的面就是圆柱的两个底面,是两个半径相同的圆。AD旋转所成的面就是圆柱的侧面,AD不论转动到哪个位置,都是圆柱的母线。
圆锥可以看做将一根直角三角形ACB绕它的一条直角边(AC)旋转一周,它的其余各边所成的面围成的一个几何体。直角边BC旋转所成的面就是圆锥的底面,斜边AB旋转所成的面就是圆锥的侧面,斜边AB不论转动到哪个位置,都叫做圆锥的母线。
数学中考知识点总结6
1、方程:含有未知数的等式叫做方程。
2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。
3、解方程:求方程的解或方判断方程无解的过程叫做解方程。
4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。
二、一元方程
1、一元一次方程
(1)一元一次方程的标准形式:ax+b=0(其中x是未知数,a、b是已知数,a≠0)
(2)一玩一次方程的最简形式:ax=b(其中x是未知数,a、b是已知数,a≠0)
(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。
(4)一元一次方程有唯一的一个解。
2、一元二次方程
(1)一元二次方程的一般形式:(其中x是未知数,a、b、c是已知数,a≠0)
(2)一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法
(3)一元二次方程解法的选择顺序是:先特殊后一般,如果没有要求,一般不用配方法。
(4)一元二次方程的根的判别式:
当Δ>0时方程有两个不相等的实数根;
当Δ=0时方程有两个相等的实数根;
当Δ< 0时方程没有实数根,无解;
当Δ≥0时方程有两个实数根
(5)一元二次方程根与系数的关系:
若是一元二次方程的两个根,那么:,(6)以两个数为根的一元二次方程(二次项系数为1)是:
三、分式方程
(1)定义:分母中含有未知数的方程叫做分式方程。
(2)分式方程的解法:
一般解法:去分母法,方程两边都乘以最简公分母。
特殊方法:换元法。
(3)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的.根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。
四、方程组
1、方程组的解:方程组中各方程的公共解叫做方程组的解。
2、解方程组:求方程组的解或判断方程组无解的过程叫做解方程组
3、一次方程组:
(1)二元一次方程组:
一般形式:(不全为0)
解法:代入消远法和加减消元法
解的个数:有唯一的解,或无解,当两个方程相同时有无数的解。
(2)三元一次方程组:
解法:代入消元法和加减消元法
4、二元二次方程组:
(1)定义:由一个二元一次方程和一个二元二次方程组成的方程组以及由两个二元二次方程组成的方程组叫做二元二次方程组。
(2)解法:消元,转化为解一元二次方程,或者降次,转化为二元一次方程组。
数学中考知识点总结7
1、二次函数的概念
一般地,如果,那么y叫做x 的二次函数。
叫做二次函数的一般式。
2、二次函数的像
二次函数的像是一条关于对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:
①有开口方向;②有对称轴;③有顶点。
3、二次函数像的画法
五点法:
(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴
(2)求抛物线与坐标轴的交点:
当抛物线与x轴有两个交点时,描出这两个交点A,B及抛物线与y轴的交点C,再找到点C的对称点D。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的像。
当抛物线与x轴只有一个交点或无交点时,描出抛物线与y轴的.交点C及对称点D。由C、M、D三点可粗略地画出二次函数的草。如果需要画出比较精确的像,可再描出一对对称点A、B,然后顺次连接五点,画出二次函数的像。
数学中考知识点总结8
圆的定理:
1不在同一直线上的三点确定一个圆。
2垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2圆的两条平行弦所夹的弧相等
3圆是以圆心为对称中心的中心对称图形
4圆是定点的距离等于定长的点的集合
5圆的内部可以看作是圆心的距离小于半径的点的集合
6圆的外部可以看作是圆心的距离大于半径的点的集合
7同圆或等圆的半径相等
8到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
10推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
中考数学知识点复习口诀
有理数的加法运算
同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。
合并同类项
合并同类项,法则不能忘,只求系数和,字母、指数不变样。
去、添括号法则
去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
一元一次方程
已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。
平方差公式
平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方公式
完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;
首±尾括号带平方,尾项符号随中央。
因式分解
一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
单项式运算
加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。
一元一次不等式解题步骤
去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
一元一次不等式组的解集
大大取较大,小小取较小,小大、大小取中间,大小、小大无处找。
一元二次不等式、一元一次绝对值不等式的解集
大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
分式混合运算法则
分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);
乘法进行化简,因式分解在先,分子分母相约,然后再行运算;
加减分母需同,分母化积关键;找出最简公分母,通分不是很难;
变号必须两处,结果要求最简。
中考数学知识点归纳:平面直角坐标系
平面直角坐标系
1、平面直角坐标系
在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点,不属于任何象限。
2、点的坐标的概念
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。
中考数学知识点的总结整理2
函数
①位置的确定与平面直角坐标系
位置的确定
坐标变换
平面直角坐标系内点的特征
平面直角坐标系内点坐标的符号与点的象限位置
对称问题:P(x,y)→Q(x,- y)关于x轴对称P(x,y)→Q(- x,y)关于y轴对称P(x,y)→Q(- x,-y)关于原点对称
变量、自变量、因变量、函数的定义
函数自变量、因变量的取值范围(使式子有意义的条件、图象法) 56、函数的图象:变量的变化趋势描述
②一次函数与正比例函数
一次函数的定义与正比例函数的定义
一次函数的图象:直线,画法
一次函数的性质(增减性)
一次函数y=kx+b(k≠0)中k、b符号与图象位置
待定系数法求一次函数的解析式(一设二列三解四回)
一次函数的平移问题
一次函数与一元一次方程、一元一次不等式、二元一次方程的关系(图象法)
一次函数的实际应用
一次函数的综合应用(1)一次函数与方程综合(2)一次函数与其它函数综合(3)一次函数与不等式的综合(4)一次函数与几何综合
中考数学知识点的总结整理3
中考难点数学知识点
三角函数关系
倒数关系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的关系
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方关系
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函数关系六角形记忆法
构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
倒数关系
对角线上两个函数互为倒数;
商数关系
六边形任意一顶点上的函数值等于与它相邻的`两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。
平方关系
在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
中考数学最易出错的知识点
数与式
易错点1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。以及绝对值与数的分类。每年选择必考。
易错点2:实数的运算要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。
易错点3:平方根、算术平方根、立方根的区别。填空题必考。
易错点4:求分式值为零时学生易忽略分母不能为零。
易错点5:分式运算时要注意运算法则和符号的变化。当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。填空题必考。
易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。
易错点7:计算第一题必考。五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。
易错点8:科学记数法。精确度,有效数字。这个上海还没有考过,知道就好!
易错点9:代入求值要使式子有意义。各种数式的计算方法要掌握,一定要注意计算顺序。
方程(组)与不等式(组)
易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。
易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0的情况,还要关注解方程与方程组的基本思想。(消元降次)主要陷阱是消除了一个带X公因式要回头检验!
易错点3:运用不等式的性质3时,容易忘记改不改变符号的方向而导致结果出错。
易错点4:关于一元二次方程的取值范围的题目易忽视二次项系数不为0导致出错。
易错点5:关于一元一次不等式组有解无解的条件易忽视相等的情况。
易错点6:解分式方程时首要步骤去分母,分数相相当于括号,易忘记根检验,导致运算结果出错。
易错点7:不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。
易错点8:利用函数图象求不等式的解集和方程的解。
中考数学易出错的知识点
函数
易错点1:各个待定系数表示的的意义。
易错点2:熟练掌握各种函数解析式的求法,有几个的待定系数就要几个点值。
易错点3:利用图像求不等式的解集和方程(组)的解,利用图像性质确定增减性。
易错点4:两个变量利用函数模型解实际问题,注意区别方程、函数、不等式模型解决不等领域的问题。
易错点5:利用函数图象进行分类(平行四边形、相似、直角三角形、等腰三角形)以及分类的求解方法。
易错点6:与坐标轴交点坐标一定要会求。面积值的求解方法,距离之和的最小值的求解方法,距离之差值的求解方法。
易错点7:数形结合思想方法的运用,还应注意结合图像性质解题。函数图象与图形结合学会从复杂图形分解为简单图形的方法,图形为图像提供数据或者图像为图形提供数据。
易错点8:自变量的取值范围有:二次根式的被开方数是非负数,分式的分母不为0,0指数底数不为0,其它都是全体实数。
中考数学知识点的总结整理4
中考数学较难的知识点
一元二次方程的基本概念
1.一元二次方程3x2+5x-2=0的常数项是-2.
2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.
3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.
4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.
知识点2:直角坐标系与点的位置
1.直角坐标系中,点A(3,0)在y轴上。
2.直角坐标系中,x轴上的任意点的横坐标为0.
3.直角坐标系中,点A(1,1)在第一象限。
4.直角坐标系中,点A(-2,3)在第四象限。
5.直角坐标系中,点A(-2,1)在第二象限。
知识点3:已知自变量的值求函数值
1.当x=2时,函数y=的值为1.
2.当x=3时,函数y=的值为1.
3.当x=-1时,函数y=的值为1.
知识点4:基本函数的概念及性质
1.函数y=-8x是一次函数。
2.函数y=4x+1是正比例函数。
3.函数是反比例函数。
4.抛物线y=-3(x-2)2-5的开口向下。
5.抛物线y=4(x-3)2-10的对称轴是x=3.
6.抛物线的顶点坐标是(1,2)。
7.反比例函数的图象在第一、三象限。
知识点5:数据的平均数中位数与众数
1.数据13,10,12,8,7的平均数是10.
2.数据3,4,2,4,4的众数是4.
3.数据1,2,3,4,5的中位数是3.
知识点6:特殊三角函数值
30°=根号3/2 。
260°+ cos260°= 1.
3.2sin30°+ tan45°= 2.
45°= 1.
60°+ sin30°= 1.
中考数学难点知识点总结《几何》
初中几何公式:线
1.同角或等角的余角相等
2.过一点有且只有一条直线和已知直线垂直
3.过两点有且只有一条直线
4.两点之间线段最短
5.同角或等角的补角相等
6.直线外一点与直线上各点连接的所有线段中,垂线段最短
7.平行公理经过直线外一点,有且只有一条直线与这条直线平行
8.如果两条直线都和第三条直线平行,这两条直线也互相平行
初中几何公式:角
9.同位角相等,两直线平行
10.内错角相等,两直线平行
11.同旁内角互补,两直线平行
12.两直线平行,同位角相等
13.两直线平行,内错角相等
14.两直线平行,同旁内角互补
初中几何公式:三角形
15.定理三角形两边的和大于第三边
16.推论三角形两边的差小于第三边
17.三角形内角和定理三角形三个内角的和等于180°
18.推论1直角三角形的两个锐角互余
19.推论2三角形的一个外角等于和它不相邻的两个内角的和
20.推论3三角形的一个外角大于任何一个和它不相邻的内角
21.全等三角形的对应边、对应角相等
22.边角边公理有两边和它们的夹角对应相等的两个三角形全等
23.角边角公理有两角和它们的夹边对应相等的两个三角形全等
24.推论有两角和其中一角的对边对应相等的两个三角形全等
25.边边边公理有三边对应相等的两个三角形全等
26.斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等
27.定理1在角的平分线上的点到这个角的两边的距离相等
28.定理2到一个角的两边的距离相同的点,在这个角的平分线上
29.角的平分线是到角的两边距离相等的所有点的集合
中考数学备考难点:分式方程
分式方程
1、分式方程
分母里含有未知数的方程叫做分式方程。
2、分式方程的一般方法
解分式方程的思想是将“分式方程”转化为“整式方程”。它的一般解法是:
(1)去分母,方程两边都乘以最简公分母
(2)解所得的整式方程
(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。
3、分式方程的特殊解法
换元法:
换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。
中考数学知识点的总结整理5
1.数轴
(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.
数轴的三要素:原点,单位长度,正方向。
(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)
(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。
重点知识:
初中数学第一课,认识正数与负数!新初一的来~
2.相反数
(1)相反数的概念:只有符号不同的两个数叫做互为相反数.
(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。
(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。
(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。
3.绝对值
1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。
①互为相反数的两个数绝对值相等;
②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.
③有理数的绝对值都是非负数.
2.如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:
①当a是正有理数时,a的绝对值是它本身a;
②当a是负有理数时,a的绝对值是它的相反数﹣a;
③当a是零时,a的绝对值是零.
即|a|={a(a>0)0(a=0)﹣a(a<0)
中考数学知识点
1、反比例函数的概念
一般地,函数(k是常数,k0)叫做反比例函数。反比例函数的解析式也可以写成的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。
2、反比例函数的图像
反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
3、反比例函数的性质
反比例函数k的符号k>0k<0图像yO xyO x性质①x的取值范围是x0,y的取值范围是y0;
②当k>0时,函数图像的两个分支分别
在第一、三象限。在每个象限内,y
随x的增大而减小。
①x的取值范围是x0,y的取值范围是y0;
②当k<0时,函数图像的两个分支分别
在第二、四象限。在每个象限内,y
随x的增大而增大。
4、反比例函数解析式的确定
确定及诶是的方法仍是待定系数法。由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。
5、反比例函数的几何意义
设是反比例函数图象上任一点,过点P作轴、轴的垂线,垂足为A,则
(1)△OPA的面积.
(2)矩形OAPB的面积。这就是系数的几何意义.并且无论P怎样移动,△OPA的面积和矩形OAPB的面积都保持不变。
矩形PCEF面积=,平行四边形PDEA面积=
二次函数中考数学知识点
二次函数的解析式有三种形式:
(1)一般式:
(2)顶点式:
(3)当抛物线与x轴有交点时,即对应二次好方程有实根和存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。
注意:抛物线位置由决定.
(1)决定抛物线的开口方向
①开口向上.
②开口向下.
(2)决定抛物线与y轴交点的位置.
①图象与y轴交点在x轴上方.
②图象过原点.
③图象与y轴交点在x轴下方.
(3)决定抛物线对称轴的位置(对称轴:)
①同号对称轴在y轴左侧.
②对称轴是y轴.
③异号对称轴在y轴右侧.
(4)顶点坐标.
(5)决定抛物线与x轴的交点情况.
①△>0抛物线与x轴有两个不同交点.
②△=0抛物线与x轴有的公共点(相切).
③△<0抛物线与x轴无公共点.
(6)二次函数是否具有、最小值由a判断.
①当a>0时,抛物线有最低点,函数有最小值.
②当a<0时,抛物线有点,函数有值.
(7)的符号的判定:
表达式,请代值,对应y值定正负;
对称轴,用处多,三种式子相约;
轴两侧判,左同右异中为0;
1的两侧判,左同右异中为0;
-1两侧判,左异右同中为0.
(8)函数图象的平移:左右平移变x,左+右-;上下平移变常数项,上+下-;平移结果先知道,反向平移是诀窍;平移方式不知道,通过顶点来寻找。
(9)对称:关于x轴对称的解析式为,关于y轴对称的解析式为,关于原点轴对称的解析式为,在顶点处翻折后的解析式为(a相反,定点坐标不变)。
(10)结论:
①二次函数(与x轴只有一个交点二次函数的顶点在x轴上Δ=0;
②二次函数(的顶点在y轴上二次函数的图象关于y轴对称;
③二次函数(经过原点,则。
(11)二次函数的解析式:
①一般式:(,用于已知三点。
②顶点式:,用于已知顶点坐标或最值或对称轴。
(3)交点式:,其中、是二次函数与x轴的两个交点的横坐标。若已知对称轴和在x轴上的截距,也可用此式。
圆柱体要领:如果用垂直于轴的两个平面去截圆柱面,那么两个截面和圆柱面所围成的几何体叫做直圆柱,简称圆柱。
圆柱体的定义
1、旋转定义法:一个长方形以一边为轴顺时针或逆时针旋转一周,所经过的空间叫做圆柱体。
2、平移定义法:以一个圆为底面,上或下移动一定的距离,所经过的空间叫做圆柱体。
性质 1.圆柱的两个圆面叫底面,周围的面叫侧面,一个圆柱体是由两个底面和一个侧面组成的。
2.圆柱体的两个底面是完全相同的两个圆面。两个底面之间的距离是圆柱体的高。
3.圆柱体的侧面是一个曲面,圆柱体的侧面的展开图是一个长方形或正方形。
圆柱的侧面积=底面周长x高,即:
S侧面积=Ch=2πrh
底面周长C=2πr=πd
圆柱的表面积=侧面积+底面积x2=2πr2+Ch=2πr(r+h)
4.圆柱的体积=底面积x高
即V=S底面积×h=(π×r×r)h
5.等底等高的圆柱的体积是圆锥的3倍6.圆柱体可以用一个平行四边形围成
圆柱的表面积=圆柱的表面积=侧面积+底面积x2
6.把圆柱沿底面直径分成两个同样的部分,每一个部分叫半圆柱。这时与原来的圆柱比较,体积不变、表面积增加两个直径X高的长方形。
7.圆柱的轴截面是直径x高的长方形,横截面是与底面相同的圆。
数学中考知识点总结9
在日常的练习、作业和考试中,学生都会或多或少地出现一些做错的题目,而对待错题的态度不同,学习的效果就会有很大的差别。丁老师就来告诉同学们怎么来用好我们的错题吧!
错题主要涉及错题收集和存档、错题改正、错题分享、错题应用四个环节。
一、错题收集和存档:
这里的错题,不仅指各级各类数学考试中的错题,还包括平时数学作业中做错的题目。最好把错题都摘录到一个固定的本子上面(错题本),便于自己以后查阅。即使是曾经错了而现在理解了的题目也最好登记在册,它们形成独具个性的学习轨迹,有利于知识的理解、识记、储存和提取。
在进行错题收集的时候,一定要注意分类。分类的方法很多,可以按照错题原因分类、按照错题中所隐含知识的章节进行分类,甚至还可以按照题型进行分类。这样整理好的错题是系统的,到最后复习时就有比较强的针对性。
二、错题改正:
收集错题以后,接下来就是改错了,这是错题管理的目的。学生要争取自己独立对错题进行分析,然后找出正确的解答,并订正。在自己独立思考的基础上,如果还是得不到答案,这时候就需要积极地求助他人了,可以是学得比较好的同学,也可以是老师。让他们帮自己分析原因,在他们的启发引导下进行改正。找到出错的症结所在,最好能在错题后面附上自己的心得体会,可以依次回答以下问题:
这道题目错在什么地方?
这道题目为什么做错了?(错在计算、化简?错在概念理解?错在理解题意?错在逻辑关系?错在以偏概全?错在粗心大意?错在思维品质?错在类比?等等。)
这道题目正确的做法是什么?
这道题目有没有其它解法?哪种方法更好?
错题改正这个过程其实就是学生再学习、再认识、再提高的过程,它使学生对易出错的知识的理解更全面透彻,掌握更加牢固,同时也提高了学生自主学习的能力。一般意义上,任何学习都需要反思,错题改正是反思的具体途径之一。
整理错题并不是为了做得好看,是为了实用,对自己的学习有帮助。因而没有固定的标准,关键要符合学生自己的习惯。但是学生一定要抽时间翻阅自己辛勤劳动的结晶,对其中的错题进行温习,这样做有时候可以收到意想不到的效果,会有新的体会。其实整理好的错题集就相当于是以前做过的大量习题中的精华荟萃(这要建立在学生认真整理的基础上),是最适合学生个人的学习资料,比任何一本参考书、习题集都有用,有价值。
三、错题分享:
在现行的学习体制下,学生之间的竞争意识很强,但是主动交流分享意识非常薄弱。其实同学就是一个巨大的'学习资源库,只要每个学生都愿意敞开心扉,真诚地交流,相互扶持,相互帮助和鼓励,学生就可以从同学身上学到很多东西。正所谓“你有一种思想,我有一种思想,交流之后我们就同时拥有了两种思想”,学生之间的错题集也可以相互交流。这是因为每个学生出错的原因各不相同,所以每个人建立的错题集也不同,通过相互交流可以从别人的错误中汲取教训,拓展自己的视野,得到启发,以警示自己不犯同样错误。不同的人从相同的题目中得到的是不同的体会,通过交流大家就可以领略到知识的不同侧面,从而对知识掌握得更加牢固。在交流的氛围中,学生改变了学习方式,增强了学习数学的积极性。
四、错题应用:
将错题收集在一起并改正,还不能完全说明学生对这一知识点的漏洞就补好了。最好的状况是对于每一个错题,学生自己还必须查找资料,找出与之相同或相关的题型,进行练习解答。如果没有困难,则说明学生对这一知识点可能已经掌握。此时,学生可以尝试着进行更高难度的事情:错题改编。将题目中的条件和结论换一下,还成立吗?把条件减弱或者把结论加强,命题还成立吗?或者尝试着编一道类似的题目,还能做吗?经历了这么一个思维洗礼,学生对知识的理解会更深刻,对方法的把握会更透彻,不管条件怎么变,他们基本上都可以应付自如了。一般情况下,学生在学校可能没有这么充裕的时间来做这样的事情,但是学生之间相互协助,每人找一个类型的题目,或者每人提出一个想法,全班合起来就基本找全了所有的题型,改编了很多道类似的题目。
错题管理有助于学生的数学学习。但是,错题管理并不是学习的目的,而是帮助学生进行有效学习的一种手段。制作错题集更不是任务,不一定要做得精致、全面,它只是一种训练思维的载体。最关键的是,学生和老师不能轻易放过错题,彻底弄清楚错题所反映的问题,学以致用。在反思学习的过程中完善自己的知识结构,提升解决问题的能力,实现有效学习和有效教学的终极目标。
数学中考知识点总结10
第十一章:全等三角形复习
一全等三角形
1、什么是全等三角形?一个三角形经过哪些变化可以得到它的全等形?能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到它的全等形。
2、全等三角形有哪些性质?
(1):全等三角形的对应边相等、对应角相等。
(2):全等三角形的周长相等、面积相等。
(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、一般三角形全等的条件(包括直角三角形):(1)定义(重合)法;
(2)SSS:三边对应相等的两个三角形全等;
(3)SAS:两边和它们的夹角对应相等两个三角形全等;
(4)ASA:两角和它们的夹边对应相等的两个三角形全等;
(5)AAS:两角和其中一角的对边对应相等的两个三角形全等。解题常用后面四种方法。直角三角形全等特有的条件:HL(斜边和一条直角边对应相等的两个直角三角形全等)。
4、证明两个三角形全等的基本思路:
(1)已知两边:a、找第三边(SSS);b、找夹角(SAS);c、找是否有直角(HL)。
(2)已知一边一角:①已知一边和他的邻角:a、找这边的另一个邻角(ASA);b、找这个角的另一个边(SAS);c、找这边的对角(AAS)。
②已知两角:a、找两角的夹边(ASA);b、找夹边外的任意边(AAS)。
二角平分线
1、角平分线的性质:角的平分线上的点到角的两边的距离相等。
2、角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上。
用法1:∵ QD⊥OA,QE⊥OB用法2:∵ QD⊥OA,QE⊥OB,QD=QE。
∴点Q在∠AOB的平分线上。 ∴点Q在∠AOB的平分线上
∴ QD=QE
3、总结提高:学习全等三角形应注意以下几个问题
(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;
(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;
(3)要记住“有三个角对应相等”或“有两边及其中一边的对角对应相等”的.两个三角形不一定全等;
(4)时刻注意图形中的隐含条件,如“公共角” 、“公共边”、“对顶角”。
练习:
练习1:如图,D在AB上,E在AC上,AB=AC ,∠B=∠C,试问AD=AE吗?
2、如图,OB⊥AB,OC⊥AC,垂足为B,C,OB=OC,AO平分∠BAC吗?
3、如图,小明不慎将一块三角形模具打碎为两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具呢?如果可以,带那块去合适?为什么?
4、如图,已知AC∥EF,DE∥BA,若使△ABC≌△EDF,还需要补
充的条件可以是
5、已知AC=DB, ∠1=∠2.求证: ∠A=∠D
6、如图,已知,AB∥DE,AB=DE,AF=DC。请问图中有那几对全等三角形?请任选一对给予证明。
7、如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?
8、已知,△ABC和△ECD都是等边三角形,且点B,C,D在一条直线上求证:BE=AD
9、求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等。
10、将纸片△ABC沿DE折叠,点A落在点F处,已知∠1+∠2=100°,则∠A=度;
11、如图6,已知:∠A=90°,AB=BD,ED⊥BC于D.求证:AE=ED
三轴对称
1、把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。
2、把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点。
3、轴对称的性质:①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
4、线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。
性质:线段垂直平分线上的点与这条线段的两个端点的距离相等(纯粹性)。
逆定理:与一条线段两个端点距离相等的点,在线段的垂直平分线上。(完备性)
线段垂直平分线的集合定义:线段垂直平分线可以看作是与线段两个端点距离相等的所有点的集合。
5、用坐标表示轴对称小结:
在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等。
利用轴对称变换作图:要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道什么地方,可使所用的输气管道线最短?
6、等腰三角形
1.等腰三角形的性质
①.等腰三角形的两个底角相等。(等边对等角)
②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)
2、等腰三角形的判定:
如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)。
7、等边三角形
(1)等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600 。
(2)等边三角形的判定:
①三个角都相等的三角形是等边三角形。②有一个角是60度的等腰三角形是等边三角形。
(3)在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。
练习1:在△ABC中,AB=AC时,(1)∵AD⊥BC
∴∠ ____= ∠_____;____=____
(2) ∵AD是中线
∴____⊥____; ∠_____= ∠_____
(3) ∵ AD是角平分线
∵____ ⊥____;_____=____
2、如图1,AD是△ABC的角平分线,BE⊥AD交AD的延长线于E,EF∥AC交AB于F,求证:AF=FB.
3、某等腰三角形的两条边长分别为3 cm和6 cm,则它的周长为:
4、等腰三角形的一个角为30°,则底角为___________.
5、已知:如图5,AB=AC,BD⊥AC.求证:∠DBC=1/2∠A。
6、如图6,在△ABC中,AB=AC,在AB上取一点E,在AC延长线上取一点F,使BE=CF,EF交BC于G,EM∥CF.求证:EG=FG.
第十四章整式和因式分解
一、幂的4个运算性质
1、同底数幂的乘法:am · an = am+n
2、同底数幂的除法:am÷an =am-n;a0=1(a≠0)
3、幂的乘方: (am )n = amn
4、积的乘方: (ab)n = anbn
如:(1)(-1)20xx+π0= (x-3)x+2=1,求x.
(2)若10x=5,10y=4,求102x+3y-1的值.
(3)计算:0.251000×(-2)20xx
二、乘法公式
1、平方差公式:(a+b)(a-b)=a2-b2
2、完全平方公式:(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2
3、三数和的平方公式:(a+b+c)2=a2+b2 +c2+2ab+2ac+2bc
计算:(3x+4)(3x-4)-(2x+3)(3x-2)
(1-x)(1+x)(1+x2)(1-x4)
(x+4y-6z)(x-4y+6z)
(x-2y+3z)2
简便计算:(1)98×102
(2)2992
(3) 20062-20xx×20xx
活学活用:已知a+b=5,ab= -2,求(1)a2+b2(2)a-b
三、因式分解
因式分解方法:一提二套三看
一提:提公因式提负号
二套:套平方差、完全平方、十字相乘法
三看:看是否分解完全。
如:x5-16x -4a 2+4ab- b 2 m 2(m-2)-4m(2-m) 4a2- 16(a-2) 2
a、多项式x2-4x+4、x2-4的公因式是
b、已知x2-2mx+16是完全平方式则m为
c、已知x2-8x+m是完全平方式,则m=
d、已知x2-8x+m2是完全平方式,则m=
e、如果(2a+2b+1)(2a+2b-1)=63,那么a+b=
f、如果(a2 +b2 )(a2 +b2 -1)=20,那么a2 +b2 =_____
简便计算:(-2)20xx+(-2)20xx
20xx+20052-20062
3992+399
数学中考知识点总结11
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的'对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值。
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点。
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
数学中考知识点总结12
中位线概念
(1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。
(2)梯形中位线定义:连接梯形两腰中点的线段叫做梯形的中位线。
注意(1)要把三角形的中位线与三角形的中线区分开。三角形中线是连接一顶点和它的对边中点的线段,而三角形中位线是连接三角形两边中点的线段。
(2)梯形的'中位线是连接两腰中点的线段而不是连结两底中点的线段。
(3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时三角形的中位线就变成梯形的中位线。
中位线定理
(1)三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.
(2)梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.
中位线定理推广
三角形有三条中位线,首尾相接时,每个小三角形面积都等于原三角形的四分之一,这四个三角形都互相全等。
数学中考知识点总结13
一、目标与要求
1.了解一元二次方程及有关概念,一般式ax2+bx+c=0(a≠0)及其派生的概念,应用一元二次方程概念解决一些简单题目。
2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程,掌握依据实际问题建立一元二次方程的数学模型的方法,应用熟练掌握以上知识解决问题。
二、重点
1.一元二次方程及其它有关的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题。
2.判定一个数是否是方程的根;
3.用配方法、公式法、因式分解法降次──解一元二次方程。
4.运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次──转化的数学思想。
5.利用实际问题建立一元二次方程的数学模型,并解决这个问题.
三、难点
1.一元二次方程配方法解题。
2.通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念。
3.用公式法解一元二次方程时的讨论。
4.通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程。
5.建立一元二次方程实际问题的数学模型,方程解与实际问题解的.区别。
6.由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根。
7.知识框架
四、知识点、概念总结
1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
2.一元二次方程有四个特点:
(1)含有一个未知数;
(2)且未知数次数最高次数是2;
(3)是整式方程。要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。如果能整理为 ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程。
(4)将方程化为一般形式:ax2+bx+c=0时,应满足(a≠0)
3. 一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0)。
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
数学中考知识点总结14
一、代数式
1. 概念:用基本的运算符号(加、减、乘、除、乘方、开方)把数与字母连接而成的式子叫做代数式。单独的一个数或字母也是代数式。
2. 代数式的值:用数代替代数式里的字母,按照代数式的运算关系,计算得出的结果。
二、整式
单项式和多项式统称为整式。
1. 单项式:1)数与字母的乘积这样的代数式叫做单项式。单独的一个数或字母(可以是两个数字或字母相乘)也是单项式。
2) 单项式的系数:单项式中的 数字因数及性质符号叫做单项式的系数。
3) 单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2. 多项式:1)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。
2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。
3. 多项式的排列:
1).把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
2).把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
三、整式的运算
1. 同类项——所含字母相同,并且相同字母的次数也相同的'项叫做同类项,几个常数项也叫同类项。同类项与系数无关,与字母排列的顺序也无关。
2. 合并同类项:把多项式中的同类项合并成一项叫做合并同类项。即同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
3. 整式的加减:有括号的先算括号里面的,然后再合并同类项。
4. 幂的运算:
5. 整式的乘法:
1) 单项式与单项式相乘法则:把它们的系数、同底数幂分别相乘,其余只在一个单项式里含有的字母连同它的指数作为积的因式。
2) 单项式与多项式相乘法则:用单项式去乘多项式的每一项,再把所得的积相加。
3) 多项式与多项式相乘法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
6. 整式的除法
1) 单项式除以单项式:把系数与同底数幂分别相除作为上的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
2) 多项式除以单项式:把这个多项式的每一项除以单项式,再把所得的商相加。
四、因式分解——把一个多项式化成几个整式的积的形式
1) 提公因式法:(公因式——多项式各项都含有的公共因式)吧公因式提到括号外面,将多项式写成因式乘积的形式。 取各项系数的最大公约数作为因式的系数,取相同字母最低次幂的积。公因式可以是单项式,也可以是多项式。
2) 公式法:A.平方差公式; B.完全平方公式
数学中考知识点总结15
有理数:
(1)凡能写成形式的数,都是有理数,整数和分数统称有理数.
注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;
(2)有理数的分类:①②
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的`数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数0和正整数;a>0a是正数;a<0a是负数;
a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.
【数学中考知识点总结】相关文章:
中考数学知识点总结05-24
中考数学知识点总结12-05
中考数学知识点总结15篇01-02
中考数学知识点归纳最新02-27
中考化学知识点总结(精选)05-26
中考化学知识点总结05-18
初中数学重要知识点总结04-24
初中数学知识点总结12-15
中考化学知识点总结15篇【推荐】05-25