有关高中数学说课稿范文十篇
在教学工作者开展教学活动前,可能需要进行说课稿编写工作,通过说课稿可以很好地改正讲课缺点。那么写说课稿需要注意哪些问题呢?下面是小编为大家整理的高中数学说课稿10篇,欢迎阅读,希望大家能够喜欢。
高中数学说课稿 篇1
一、教材分析:
1、教材的地位与作用:
线性规划是运筹学的一个重要分支,在实际生活中有着广泛的应用。本节内容是在学习了不等式、直线方程的基础上,利用不等式和直线方程的有关知识展开的,它是对二元一次不等式的深化和再认识、再理解。通过这一部分的学习,使学生进一步了解数学在解决实际问题中的应用,体验数形结合和转化的思想方法,培养学生学习数学的兴趣、应用数学的意识和解决实际问题的`能力。
2、教学重点与难点:
重点:画可行域;在可行域内,用图解法准确求得线性规划问题的最优解。
难点:在可行域内,用图解法准确求得线性规划问题的最优解。
二、目标分析:
在新课标让学生经历“学数学、做数学、用数学”的理念指导下,本节课的教学目标分设为知识目标、能力目标和情感目标。
知识目标:
1、了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行
域和最优解等概念;
2、理解线性规划问题的图解法;
3、会利用图解法求线性目标函数的最优解.
能力目标:
1、在应用图解法解题的过程中培养学生的观察能力、理解能力。
2、在变式训练的过程中,培养学生的分析能力、探索能力。
3、在对具体事例的感性认识上升到对线性规划的理性认识过程中,培养学生运用数形结合思想解题的能力和化归能力。
情感目标:
1、让学生体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用,品尝学习数学的乐趣。
2、让学生体验数学活动充满着探索与创造,培养学生勤于思考、勇于探索的精神;
3、让学生学会用运动观点观察事物,了解事物之间从一般到特殊、从特殊到一般的辨证关系,渗透辩证唯物主义认识论的思想。
高中数学说课稿 篇2
尊敬的各位专家、评委:
上午好!
今天我说课的课题是人教A版必修1第二章第二节《对数函数》。
我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。
一、教材分析
地位和作用
本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习。而对数函数作为这一阶段的重要的基本初等函数之一,它是在学生已经学习了指数函数及对数的内容,这为过渡到本节的学习起着铺垫作用。“对数函数”这节教材,是在没有学习反函数的基础上研究的指数函数和对数函数的自变量和因变量之间的关系。同时对数函数作为常用数学模型在解决社会生活中的实例有着广泛的应用,本节课的学习为学生进一步学习,参加生产和实际生活提供必要的基础知识。
二、目标分析
(一)、教学目标
根据《对数函数》在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下的教学目标:
1、知识与技能
(1)、进一步体会函数是描述变量之间的依赖关系的重要数学模型;
(2)、理解对数函数的概念、掌握对数函数的图像和性质;
(3)、由实际问题出发,培养学生探索知识和抽象概括知识等方面的能力。
2、过程与方法
引导学生观察,探寻变量和变量的对应关系,通过归纳、抽象、概括,自主建构对数函数的概念;体验结合旧知识探索新知识,研究新问题的快乐。
3、情感态度与价值观
通过对对数函数函数图像和性质的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。在民主、和谐的教学气氛中,促进师生的情感交流。
(二)教学重点、难点及关键
1、重点:对数函数的概念、图像和性质;在教学中只有突出这个重点,才能使教材脉络分明,才能有利于学生联系旧知识,学习新知识。
2、 难点:底数a对对数函数的图像和性质的影响。
[关键]对数函数与指数函数的类比教学。
由指数函数的图像过渡到对数函数的图像,通过类比分析达到深刻地了解对数函数的图像及其性质是掌握重点和突破难点的关键,在教学中一定要使学生的思考紧紧围绕图像,数形结合,加强直观教学,使学生能形成以图像为根本,以性质为主体的知识网络,同时在立体的讲解中,重视加强题组的设计和变形,使教学真正体现出由浅入深,由易到难,由具体到抽象的.特点,从而突破重点、突破难点。
三、教法、学法分析
(一)、教法
教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:
1、启发引导学生思考、分析、实验、探索、归纳;
2、采用“从特殊到一般”、“从具体到抽象”的方法;
3、体现“对比联系”、“数形结合”及“分类讨论”的思想方法;
4、投影仪演示法。
在整个过程中,应以学生看,学生想,学生议,学生练为主体,教师在学生仔细观察、类比、想象的基础上通过问题串的形式加以引导点拨,与指数函数性质对照,归纳,整理,只有这样,才能唤起学生对原有知识的回忆,自觉地找到新旧知识的联系,使新学知识更牢固,理解更深刻。
(二)、学法
教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:
1、对照比较学习法:学习对数函数,处处与指数函数相对照;
2、探究式学习法:学生通过分析、探索,得出对数函数的定义;
3、自主性学习法:通过实验画出函数图像、观察图像自得其性质;
4、反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。
四、教学过程分析
(一)、教学过程设计
1、创设情境,提出问题。
在某细胞分裂过程中,细胞个数y是分裂次数x的函数y=2x,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式。
问题一:这是一个怎样的函数模型类型呢?
设计意图
复习指数函数
问题二:现在我们来研究相反的问题,如果知道了细胞的个数y,如何求分裂的次数x呢?这将会是我们研究的哪类问题?
设计意图
为了引出对数函数
问题三:在关系式x=log2y每输入一个细胞的个数y的值,是否一定都能得到唯一一个分裂次数x的值呢?
设计意图
(1)、为了让学生更好地理解函数;
(2)、为了让学生更好地理解对数函数的概念。
2、引导探究,建构概念。
(1)、对数函数的概念:
同样,在前面提到的发射性物质,经过的时间x年与物质剩余量y的关系式为y=0.84x,我们也可以把它改成对数式x=log0.84y,其中x年夜可以看作物质剩余量y的函数,可见这样的问题在现实生活中还是不少的。
设计意图
前面的问题情景的底数为2,而这个问题情景的底数是0.84,我认为这个情景并不是多余的,其实它暗示了对数函数的底数与指数函数的底数一样有两类。
但是在习惯上,我们用x表示自变量,用y表示函数值。
问题一:你能把以上两个函数表示出来吗?
问题二:你能得到此类函数的一般式吗?
设计意图
体现出了由特殊到一般的数学思想
问题三:在y=logax中,a有什么限制条件吗?请结合指数式给以解释。
问题四:你能根据指数函数的定义给出对数函数的定义吗?
问题五:x=logay与y=ax中的x,y的相同之处是什么?不同之处是什么?
设计意图
前四个问题是为了引导出对数函数的概念,然而,光有前四个问题还是不够的,学生最容易忽略或最不容易理解的是函数的定义域,所以设计这个问题是为了让学生更好地理解对数函数的定义域。
(2)、对数函数的图像与性质
问题:有了研究指数函数的经历,你觉得下面该学习什么内容了?
设计意图
提示学生进行类比学习
合作探究1:借助计算器在同一直角坐标系中画出下列两组函数的图像,并观察各族函数图像,探求他们之间的关系。
y=2x;y=log2x y=( )x,y=log x
合作探究2:当a>0,a≠ 1,函数y=ax与y=logax图像之间有什么关系?
设计意图
在这儿体现“从特殊到一般”、“从具体到抽象”的方法。
合作探究3:分析你所画的两组函数的图像,对照指数函数的性质,总结归纳对数函数的性质。
设计意图
学生讨论并交流各自的而发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)。问题1:对数函数y=logax( a>0,a≠1,)是否具有奇偶性,为什么?
问题2:对数函数y=logax( a>0,a≠1,),当a>1时,x取何值,y>0,x取何值,y<0,当0 问题3:对数式logab的值的符号与a,b的取值之间有何关系? 知识拓展:函数y=ax称为y=logax的反函数,反之,也成立,一般地,如果函数y=f(x)存在反函数,那么它的反函数记作y=f-1(x)。 3、自我尝试,初步应用。 例1:求下列函数的定义域 y=log0.2(4-x)(该题主要考查对函数y=logax的定义域(0,+∞)这一限制条件,根据函数的解析式求得不等式,解对应的不等式。) 例2:利用对数函数的性质,比较下列各组数中两个数的大小: (1)、㏒2 3.4,log2 3.8; (2)、log0.5 1.8,log0.5 2.1; (3)、log7 5,log6 7 (在这儿要求学生通过回顾指数函数的有关性质比较大小的步骤和方法,完成完成前两题,最后一题可以通过教师的适当点拨完成解答,最后进行归纳总结比较数的大小常用的方法) 合作探究4:已知logm 4 设计意图 该题不仅运用了对数函数的图像和性质,还培养了学生数形结合、分类讨论等数学思想。 4、当堂训练,巩固深化。 通过学生的主体性参与,使学生深刻体会到本节课的主要内容和思想方法,从而实现对知识的再次深化。 采用课后习题1,2,3. 5、小结归纳,回顾反思。 小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。 (1)、小结: ①对数函数的概念 ②对数函数的图像和性质 ③利用对数函数的性质比较大小的一般方法和步骤, (2)、反思 我设计了三个问题 ①、通过本节课的学习,你学到了哪些知识? ②、通过本节课的学习,你最大的体验是什么? ③、通过本节课的学习,你掌握了哪些技能? (二)、作业设计 作业分为必做题和选做题,必做题是对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生的自主发展、合作探究的学习氛围的形成。 我设计了以下作业: 必做题:课后习题A 1,2,3; 选做题:课后习题B 1,2,3; (三)、板书设计 板书要基本体现课堂的内容和方法,体现课堂进程,能简明扼要反映知识结构及其相互关系:能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。 五、评价分析 学生学习的结果评价固然重要,但是更重要的是学生学习的过程评价。我采用了及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。 以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。 谢谢! 各位老师: 大家好! 我叫***,来自**。我说课的题目是《简单随机抽样》,内容选自于新课程人教A版必修3第二章第一节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、和教学过程分析等四大方面来阐述我对这节课的分析和设计: 一、教材分析 1.教材所处的地位和作用 "简单随机抽样"是"随机抽样"的基础,"随机抽样"又是"统计学"的基础,因此,在"统计学"中,"简单随机抽样"是基础的基础。在初中学生已学过相关概念,如"抽样""总体"、"个体"、"样本"、"样本容量"等,具有一定基础,新教材把"统计"这部分内容编入必修部分,突出了统计在日常生活中的应用,体现它在中学数学中的地位,但同时也给学生学习增加了难度。 2教学的重点和难点 重点:掌握简单随机抽样常见的两种方法(抽签法、随机数表法) 难点:理解简单随机抽样的科学性,以及由此推断结论的可靠性 二、教学目标分析 1.知识与技能目标: 正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤; 2.过程与方法目标: (1)能够从现实生活或其他学科中提出具有一定价值的统计问题; (2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。 3.情感,态度和价值观目标 通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性 三、教学方法与手段分析 为了充分让学生自己分析、判断、自主学习、合作交流。因此,我采用讨论发现法教学,并对学生渗透"从特殊到一般"的学习方法,由于本节课内容实例多,信息容量大,文字多,我采用多媒体辅助教学,节省时间,提高教学效率,另外采用这种形式也可强化学生感观刺激,也能大大提高学生的学习兴趣。 四、教学过程分析 (一)设置情境,提出问题 例1:请问下列调查是"普查"还是"抽样"调查? A、一锅水饺的味道B、旅客上飞机前的安全检查 c、一批炮弹的杀伤半径D、一批彩电的质量情况 E、美国总统的.民意支持率 学生讨论后,教师指出生活中处处有"抽样" 「设计意图」生活中处处有"抽样"调查,明确学习"抽样"的必要性。 (二)主动探究,构建新知 例2:语文老师为了了解某班同学对某首诗的背诵情况,应采用下列哪种抽查方式?为什么? A、在班级12名班委名单中逐个抽查5位同学进行背诵 B、在班级45名同学中逐一抽查10位同学进行背诵 先让学生分析、选择B后,师生一起归纳其特征: (1)不放回逐一抽样, (2)抽样有代表性(个体被抽到可能性相等),学生体验B种抽样的科学性后,教师指出这是简单随机抽样,并复习初中讲过的有关概念,最后教师补充板书课题--(简单随机)抽样及其定义。 「设计意图」例2从正面分析简单随机抽样的科学性、公平性,突出"等可能性"特征。这是突破教学难点的重要环节之一。 例3我们班有44名学生,现从中抽出5名学生去参加学生座谈会,要使每名学生的机会均等,我们应该怎么做?谈谈你的想法。 先让学生独立思考,然后分小组合作学习,最后各小组推荐一位同学发言,最后师生一起归纳"抽签法"步骤: (1)编号制签 (2)搅拌均匀 (3)逐个不放回抽取n次。教师板书上面步骤。 「设计意图」在自主探究,合作交流中构建新知,体验"抽签法"的公平性,从而突破难点,突出重点。 请一位同学说说例2采用"抽签法"的实施步骤。 「设计意图」 1、反馈练习,落实知识点,突出重点。 2、体会"抽签法"具有"简单、易行"的优点。 〈屏幕出示〉 例4、假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验 提问:这道题适合用抽签法吗? 让学生进行思考,分析抽签法的局限性,从而引入随机数表法。教师出示一份随机数表,并介绍随机数表,强调数表上的数字都是随机的,各个数字出现的可能性均等,结合上例让学生讨论随机数表法的步骤,最后师生一起归纳步骤: (1)编号 (2)在随机数表上确定起始位置 (3)取数。教师板书上面步骤。 请一位同学说说例2采用"随机数表法"的实施步骤。 「设计意图」 1、体会随机数表法的科学性 2、体会随机数表法的优越性:避免制签、搅拌。 3、反馈练习,落实知识点,突出重点。 ㈢课堂小结: 1.简单随机抽样及其两种方法 2.两种方法的操作步骤 (采用问答形式) 「设计意图」通过小结使学生们对知识有一个系统的认识,突出重点,抓住关键,培养概括能力。 ㈣布置作业 课本练习2、3 [设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。 一、教材分析 1、教材内容 本节课是苏教版第二章《函数概念和基本初等函数Ⅰ》§2。1。3函数简单性质的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题。 2、教材所处地位、作用 函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质。通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题。通过上述活动,加深对函数本质的认识。函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础。此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一。从方法论的角度分析,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法。 3、教学目标 (1)知识与技能:使学生理解函数单调性的概念,掌握判别函数单调性 的方法; (2)过程与方法:从实际生活问题出发,引导学生自主探索函数单调性的概念,应用图象和单调性的定义解决函数单调性问题,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。 (3)情感态度价值观:让学生体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质。 4、重点与难点 教学重点(1)函数单调性的概念; (2)运用函数单调性的定义判断一些函数的单调性。 教学难点(1)函数单调性的知识形成; (2)利用函数图象、单调性的定义判断和证明函数的单调性。 二、教法分析与学法指导 本节课是一节较为抽象的数学概念课,因此,教法上要注意: 1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主体参与的积极性。 2、在运用定义解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决。 3、在鼓励学生主体参与的同时,不可忽视教师的.主导作用。具体体现在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成功地完成书面表达。 4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性。 在学法上: 1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力。 2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃。 三、 教学过程 教学 环节 教 学 过 程 设 计 意 图 问题 情境 (播放中央电视台天气预报的音乐) 满足在定义域上的单调性的讨论。 2、重视学生发现的过程。如:充分暴露学生将函数图象(形)的特征转化为函数值(数)的特征的思维过程;充分暴露在正、反两个方面探讨活动中,学生认知结构升华、发现的过程。 3、重视学生的动手实践过程。通过对定义的解读、巩固,让学生动手去实践运用定义。 4、重视课堂问题的设计。通过对问题的设计,引导学生解决问题。 【教材分析】 1、本节教材的地位与作用 本节主要研究闭区间上的连续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值”,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题。这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有极为重要的意义。 2、教学重点 会求闭区间上连续开区间上可导的函数的最值。 3、教学难点 高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优化解题过程依据的.理解会有较大的困难,所以这节课的难点是理解确定函数最值的方法。 4、教学关键 本节课突破难点的关键是:理解方程f′(x)=0的解,包含有指定区间内全部可能的极值点。 【教学目标】 根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标: 1、知识和技能目标 (1)理解函数的最值与极值的区别和联系。 (2)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值。 (3)掌握用导数法求上述函数的最大值与最小值的方法和步骤。 2、过程和方法目标 (1)了解开区间内的连续函数或闭区间上的不连续函数不一定有最大、最小值。 (2)理解闭区间上的连续函数最值存在的可能位置:极值点处或区间端点处。 (3)会求闭区间上连续,开区间内可导的函数的最大、最小值。 3、情感和价值目标 (1)认识事物之间的的区别和联系。 (2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题。 (3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神。 【教法选择】 根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用。 本节课在帮助学生回顾肯定了闭区间上的连续函数一定存在最大值和最小值之后,引导学生通过观察闭区间内的连续函数的几个图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行适当的引导,而不进行全部的灌输。为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学。 【学法指导】 对于求函数的最值,高三学生已经具备了良好的知识基础,剩下的问题就是有没有一种更一般的方法,能运用于更多更复杂函数的求最值问题?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用。 【教学过程】 本节课的教学,大致按照“创设情境,铺垫导入——合作学习,探索新知——指导应用,鼓励创新——归纳小结,反馈回授”四个环节进行组织。 各位同仁,各位专家: 我说课的课题是《任意角的三角函数》,内容取自苏教版高中实验教科书《数学》第四册 第1。2节 先对教材进行分析 教学内容:任意角三角函数的定义、定义域,三角函数值的符号。 地位和作用: 任意角的三角函数是本章教学内容的基本概念对三角内容的整体学习至关重要。同时它又为平面向量、解析几何等内容的学习作必要的准备,通过这部分内容的学习,又可以帮助学生更加深入理解函数这一基本概念。所以这个内容要认真探讨教材,精心设计过程。 教学重点:任意角三角函数的定义 教学难点:正确理解三角函数可以看作以实数为自变量的函数、初中用边长比值来定义转变为坐标系下用坐标比值定义的观念的转换以及坐标定义的合理性的理解; 学情分析: 学生已经掌握的内容,学生学习能力 1。初中学生已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。 2。我们南山区经过多年的初中课改,学生已经具备较强的自学能力,多数同学对数学的学习有相当的兴趣和积极性。 3。在探究问题的能力,合作交流的意识等方面发展不够均衡,尚有待加强必须在老师一定的指导下才能进行 针对对教材内容重难点的和学生实际情况的分析我们制定教学目标如下 知识目标: (1)任意角三角函数的定义;三角函数的定义域;三角函数值的符号, 能力目标: (1)理解并掌握任意角的三角函数的定义; (2)正确理解三角函数是以实数为自变量的函数; (3)通过对定义域,三角函数值的符号的推导,提高学生分析探究解决问题的能力。 德育目标: (1)学习转化的思想,(2)培养学生严谨治学、一丝不苟的科学精神; 针对学生实际情况为达到教学目标须精心设计教学方法 教法学法:温故知新,逐步拓展 (1)在复习初中锐角三角函数的定义的基础上一步一步扩展内容,发展新知识,形成新的概念; (2)通过例题讲解分析,逐步引出新知识,完善三角定义 运用多媒体工具 (1)提高直观性增强趣味性。 教学过程分析 总体来说, 由旧及新,由易及难, 逐步加强,逐步推进 先由初中的直角三角形中锐角三角函数的定义 过度到直角坐标系中锐角三角函数的定义 再发展到直角坐标系中任意角三角函数的定义 给定定义后通过应用定义又逐步发现新知识拓展完善定义。 具体教学过程安排 引入: 复习提问:初中直角三角形中锐角的正弦余弦正切是怎样定义的? 由学生回答 SinA=对边/斜边=BC/AB cosA=对边/斜边=AC/AB tanA=对边/斜边=BC/AC 逐步拓展:在高中我们已经建立了直角坐标系, 把“定义媒介”从直角三角形改为平面直角坐标系。 我们知道,随着角的概念的推广,研究角时多放在直角坐标系里, 那么三角函数的.定义能否也放到坐标系去研究呢? 引导学生发现B的坐标和边长的关系。进一步启发他们发现由于相似三角形的相似比导致OB上任一P点都可以代换B,把三角函数的定义发展到用终边上任一点的坐标来表示, 从而锐角三角函数可以使用直角坐标系来定义,自然地,要想定义任意一个角三角函数,便考虑放在直角坐标中进行合理进行定义了 从而得到 知识点一:任意一个角的三角函数的定义 提醒学生思考:由于相似比相等,对于确定的角A ,这三个比值的大小和P点在角的终边上的位置无关。 精心设计例题,引出新内容深化概念,完善定义 例1已知角A 的终边经过P(2,—3),求角A的三个三角函数值 (此题由学生自己分析独立动手完成) 例题变式1,已知角A 的大小是30度,由定义求角A的三个三角函数值 结合变式我们发现三个三角函数值的大小与角的大小有关,只会随角的大小而变化,符合当初函数的定义,而我们又一直称呼为三角函数, 提出问题:这三个新的定义确实问是函数吗?为什么? 从而引出函数极其定义域 由学生分析讨论,得出结论 知识点二:三个三角函数的定义域 同时教师强调:由于弧度制使角和实数建立了一一对应关系,所以三角函数是以实数为自变量的函数 例题变式2, 已知角A 的终边经过P(—2a,—3a)( a不为0),求角A的三个三角函数值 解答中需要对变量的正负即角所在象限进行讨论, 让学生意识到三角函数值的正负与角所在象限有关,从而导出第三个知识点 知识点三:三角函数值的正负与角所在象限的关系 由学生推出结论,教师总结符号记忆方法,便于学生记忆 例题2:已知A在第二象限且 sinA=0。2 求cosA,tanA 求cosA,tanA 综合练习巩固提高,更为下节的同角关系式打下基础 拓展,如果不限制A的象限呢,可以留作课外探讨 小结回顾课堂内容 课堂作业和课外作业以加强知识的记忆和理解 课堂作业P16 1,2,4 (学生演板,后集体讨论修订答案同桌讨论,由学生回答答案) 课后分层作业(有利于全体学生的发展) 必作P23 1(2),5(2),6(2)(4) 选作P23 3,4 板书设计(见PPT) 一、教材分析 1.《指数函数》在教材中的地位、作用和特点 《指数函数》是人教版高中数学(必修)第一册第二章“函数”的第六节内容,是在学习了《指数》一节内容之后编排的。通过本节课的学习,既可以对指数和函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因为《指数函数》是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以《指数函数》不仅是本章《函数》的重点内容,也是高中学段的主要研究内容之一,有着不可替代的重要作用。 此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。 2.教学目标、重点和难点 通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面: 知识维度:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。 技能维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。 素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。 鉴于对学生已有的知识基础和认知能力的分析,根据《教学大纲》的要求,我确定本节课的教学目标、教学重点和难点如下: (1)知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质;③能初步利用指数函数的概念解决实际问题; (2)技能目标:①渗透数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力; (3)情感目标:①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力③领会数学科学的应用价值。 (4)教学重点:指数函数的图象和性质。 (5)教学难点:指数函数的图象性质与底数a的关系。 突破难点的关键:寻找新知生长点,建立新旧知识的联系,在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。 二、教法设计 由于《指数函数》这节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学达到不仅使学生初步理解并能简单应用指数函数的知识,更期望能引领学生掌握研究初等函数图象性质的一般思路和方法,为今后研究其它的函数做好准备,从而达到培养学生学习能力的目的,我根据自己对“诱思探究”教学模式和“情景式”教学模式的认识,将二者结合起来,主要突出了几个方面: 1.创设问题情景.按照指数函数的在生活中的实际背景给出两个实例,充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,而这两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。 2.强化“指数函数”概念.引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点,请学生思考对于底数a是否需要限制,如不限制会有什么问题出现,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的.铺垫。 3.突出图象的作用.在数学学习过程中,图形始终使我们需要借助的重要辅助手段。一位数学家曾经说过“数离形时少直观,形离数时难入微”,而在研究指数函数的性质时,更是直接由图象观察得出性质,因此图象发挥了主要的作用。 4.注意数学与生活和实践的联系.数学的本质是来源于生活,服务于实践。在课堂教学的引入、例题的讲解和课外知识的拓展部分,都介绍了与指数函数息息相关的生活问题,力图使学生了解到数学的基础学科作用,培养学生的数学应用意识。 三、学法指导 本节课是在学习完“指数”的概念和运算后编排的,针对学生实际情况,我主要在以下几个方面做了尝试: 1.再现原有认知结构。在引入两个生活实例后,请学生回忆有关指数的概念,帮助学生再现原有认知结构,为理解指数函数的概念做好准备。 2.领会常见数学思想方法。在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个高中的数学学习。 3.在互相交流和自主探究中获得发展。在生活实例的课堂导入、指数函数的性质研究、例题与训练、课内小节等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。 4.注意学习过程的循序渐进。在概念、图象、性质、应用、拓展的过程中按照先易后难的顺序层层递进,让学生感到有挑战、有收获,跳一跳,够得着,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。 四、程序设计 在设计本节课的教学过程中,本着遵循学生的认知规律、让学生去经历知识的形成与发展过程的原则,我设计了如下的教学程序,启发学生逐步发现和认识指数函数的图象和性质。 1.创设情景、导入新课 教师活动:①用电脑展示两个实例,第一个是计算机价格下降问题,第二个是生物中细胞分裂的例子,②将学生按奇数列、偶数列分组。 学生活动:①分别写出计算机价格y与经过月份x的关系式和细胞个数y与分裂次数x的关系式,并互相交流;②回忆指数的概念;③归纳指数函数的概念;④分析出对指数函数底数讨论的必要性以及分类的方法。 设计意图:通过生活实例激发学生的学习动机,,扫清由概念不清而造成的知识障碍,培养学生思维的主动性, 为突破难点做好准备; 2.启发诱导、探求新知 教师活动:①给出两个简单的指数函数并要求学生画它们的图象②在准备好的小黑板上规范地画出这两个指数函数的图象③板书指数函数的性质。 学生活动:①画出两个简单的指数函数图象②交流、讨论③归纳出研究函数性质涉及的方面④总结出指数函数的性质。 设计意图:让学生动手作简单的指数函数的图象对深刻理解本节课的内容有着一定的促进作用,在学生完成基本作图之后,教师再利用课前已列表、建立坐标系的小黑板展示准确的作图方法,达到进一步规范学生的作图习惯的目的,然后借助“函数作图器”用多媒体将指数函数的图象推广到一般情况,学生就会很自然的通过观察图象总结出指数函数的性质,同时对于底数的讨论也就变得顺理成章。 3.巩固新知、反馈回授 教师活动:①板书例1②板书例2第一问③介绍有关考古的拓展知识。 一.说教材 1.本节课主要内容是线性规划的意义以及线性约束条件、线性目标函数、可行域、可行解、最优解等概念,根据约束条件建立线性目标函数。应用线性规划的图解法解决一些实际问题。 2.地位作用:线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,它可以解决科学研究、工程设计、经济管理等许多方面的实际问题。简单的线性规划是在学习了直线方程的基础上,介绍直线方程的一个简单应用。通过这部分内容的学习,使学生进一步了解数学在解决实际问题中的应用,以培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力。 3.教学目标 (1)知识与技能:了解线性规划的意义以及线性约束条件、线性目标函数、可行域、可行解、最优解等概念,能根据约束条件建立线性目标函数。 了解并初步应用线性规划的图解法解决一些实际问题。 (2)过程与方法:提高学生数学地提出、分析和解决问题的能力,发展学生数学应用意识,力求对现实世界中蕴含的一些数学模式进行思考和作出判断。 (3)情感、态度与价值观:体会数形结合、等价转化等数学思想,逐步认识数学的应用价值,提高学习数学的兴趣,树立学好数学的自信心。 4.重点与难点 重点:理解和用好图解法 难点:如何用图解法寻找线性规划的最优解。 二.说教学方法 教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的`积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法: (1)启发引导学生思考、分析、实验、探索、归纳。这能充分调动学生的主动性和积极性。 (2)采用“从特殊到一般”、“化抽象为具体”、“化静为动”的方法。这有利于学生对知识进行主动建构;有利于突出重点、解决难点;也有利于发挥学生的创造性。 (3)体现“等价转化”、“数形结合”的思想方法。这样可发挥学生的主观能动性,有利于提高学生的各种能力。 三.说学法指导 教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:观察分析、联想转化、动手实验、练习巩固。 (1)观察分析:通过引例让学生观察化旧知为新知,造成学生认知冲突。 (2)联想转化:学生通过分析、探索、得出解决问题的方法。 (3)动手实验:通过作图、实验、从而得出一般解题步骤。 (4)练习巩固:让学生知道数学重在运用,从而检验知识的应用情况,找出未掌握的内容及其差距。 四.说教学程序 1、导入课题: 由一个不等式组表示平面区域转化为在此平面区域内一二元一次数的最值问题,造成学生认知冲突。 3、导学达标之一:创设情境、形成概念 通过引例的问题让学生探索解决新问题的方法。 (设计意图:利用已经学过的知识逐步分析,学以致用,使学生经历数学知识的形成过程,从而提高学生数学的地提出、分析和解决问题的能力。) 然后老师逐步引导,动手实验,化抽象为直观。从而得到解决此类问题的方法,并对比引例给出相关概念:线性约束条件、目标函数、线性目标函数、线性规划、可行解、可行域、最优解。并能根据引例提炼线性规划问题的解法——图解法。 (设计意图:引导学生观察和分析问题,激发学生的探索欲望,从而培养学生的解决问题和总结归纳的能力。) 4.导学达标之二:针对问题、举例讲解、形成技能 例一:课本61页例3 (创设意境:,练习是使学生明白数学来源于实际又运用于实际,同时使学生进初步应用线性规划的图解法解决一些实际问题。) 6.巩固目标: 练习一:学生做课堂练习P64例4 (叫学生提出解决问题的方法,并用多媒体展示,并根据问题的实际意义,考虑取值范围。造成新的认知冲突,从而研究探索,得到整点最优解的一种求法。) 练习二:为了赚大钱,老张最近承包了一家具厂,可老张却闷闷不乐,原来家具厂有方木料90m3,五合板600m2,老张准备加工成书桌和书厨出售,他通过调查了解到:生产每张书桌需要方木料0.1m3、五合板2m2,生产每个书橱需要方木料0.2m3、五合板1m2,出售一张书桌可获利润80元,出售一个书橱可获利润120元。老张却不知如何安排?(电脑显示问题) (设计意图:通过实际问题,激发学生兴趣,培养学生的数学应用意识,力求学生能够对现实生活中蕴含的一些数学模式进行思考和作出判断。) 7.归纳与小结: 小结本课的主要学习内容是什么?(由师生共同来完成本课小结) (创设意境:让学生参与小结,引导学生对所学知识进行反思,有利于加强学生记忆和形成良好的数学思维习惯) 8.布置作业: P64. 2 五.说板书设计 板书设计为表格式,这样的板书简明清楚,重点突出,加深学生对重点知识的理解和掌握,同时便于记忆,有利于提高教学效果。 一、教材分析(说教材): 1. 教材所处的地位和作用: 本节内容在全书和章节中的作用是:《 》是 中数学教材第 册第 章第 节内容。在此之前学生已学习了 基础,这为过渡到本节的学习起着铺垫作用。本节内容是在 中,占据 的地位。以及为其他学科和今后的学习打下基础。 2. 教育教学目标: 根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标: (1)知识目标: (2)能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析,收集处理信息,团结协作,语言表达能力以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力,(3)情感目标:通过 的教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。 3. 重点,难点以及确定依据: 下面,为了讲清重难上点,使学生能达到本节课设定的目标,再从教法和学法上谈谈: 二、教学策略(说教法) 1. 教学手段: 如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点: 应着重采用 的教学方法。 2. 教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。 3. 学情分析:(说学法) (1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散 (2) 知识障碍上:知识掌握上,学生原有的知识 ,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍, 知识 学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。 (3)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的'学习积极性,激发来自学生主体的最有力的动力 最后我来具体谈谈这一堂课的教学过程: 4. 教学程序及设想: (1)由 引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的沉思,期待录找理由和证明过程。在实际情况下学习可以使学生利用已有的知识与经验,同化和索引出当肖学习的新知识,这样获取知识,不但易于保持,而且易于迁移到陌生的问题情境中。 (2)由实例得出本课新的知识点 (3)讲解例题。在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。 (4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。 (5)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。 (6)变式延伸,进行重构,重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联,累积,加工,从而达到举一反三的效果。 (7)板书 (8)布置作业。 针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高, 教学程序: (一)课堂结构:复习提问,导入讲授课,课堂练习,巩固新课,布置作业等五部分 高中数学集合教学反思 集合这章内容,教学参考书上安排的课时为五课时,我们的导学案也是安排五课时,实际教学时,由于对学生的实际情况估计不足,第一课时的导学案用了两课时才完成。集合这一章的特点是概念不多,但这章所涉及到的内容很广,学生学习本章内容时,不仅要理解本章的概念,还要理解与本章内容相关联的其他内容,这些内容有初中学习过的内容、有生活中的方方面面的相关知识,再加上高中学习方法与初中不同,逻辑思维能力要求较高,因此学生感觉学起来比较困难。针对这种情况,我在实际教学时,首先要求学生准确理解概念,如:集合的元素具有三个性质:确定性、互异性、无序性。集合的关系、运算等都是从元素的角度定义的,所以解集合问题时,教会学生对元素的性质进行分析,反复训练,让学生通过实例体会这三个性质。 第二,掌握相关的符号语言、venn图,正确使用列举法、描述法表示集合,特别要注意用描述法表示集合时,集合中的元素是什么,这是一个教学难点。第二个难点是集合的运算—交集和并集。突破难点充分运用数形结合思想,集合间的关系和运算,以数形结合思想为指导,借助图形思考,可以使各集合间的关系直观明了,使抽象的集合运算建立在直观的基础上,使解题思路清晰明朗,直观简捷,有利于问题的解决。 第三,指导学生理解并掌握自然语言、符号语言、图形语言这三种语言,灵活准确地进行语言转换,可以帮助学生提高分析问题,解决问题的能力。 第四,集合问题涉及到的其他内容,遇到了讲透,不拓展。 我说课的内容是高中数学第二册(上册)第七章《直线和圆的方程》中的第六节“曲线和方程”的第一课时,下面我的说课将从以下几个方面进行阐述: 一、教材分析 教材的地位和作用 “曲线和方程”这节教材揭示了几何中的形与代数中的数相统一的关系,为“作形判数”与“就数论形”的相互转化开辟了途径,这正体现了解析几何这门课的基本思想,对全部解析几何教学有着深远的影响。学生只有透彻理解了曲线和方程的意义,才算是寻得了解析几何学习的入门之径。如果以为学生不真正领悟曲线和方程的关系,照样能求出方程、照样能计算某些难题,因而可以忽视这个基本概念的教学,这不能不说是一种“舍本逐题”的偏见,应该认识到这节“曲线和方程”的开头课是解析几何教学的“重头戏”! 根据以上分析,确立教学重点是:“曲线的方程”与“方程的曲线”的`概念;难点是:怎样利用定义验证曲线是方程的曲线,方程是曲线的方程。 二、教学目标 根据教学大纲的要求以及本教材的地位和作用,结合高二学生的认知特点确定教学目标如下: 知识目标: 1、了解曲线上的点与方程的解之间的一一对应关系; 2、初步领会“曲线的方程”与“方程的曲线”的概念; 3、学会根据已有的情景资料找规律,进而分析、判断、归纳结论; 4、强化“形”与“数”一致并相互转化的思想方法。 能力目标: 1、通过直线方程的引入,加强学生对方程的解和曲线上的点的一一对应关系的认识; 2、在形成曲线和方程的概念的教学中,学生经历观察、分析、讨论等数学活动过程,探索出结论,并能有条理的阐述自己的观点; 3、能用所学知识理解新的概念,并能运用概念解决实际问题,从中体会转化化归的思想方法,提高思维品质,发展应用意识。 情感目标: 1、通过概念的引入,让学生感受从特殊到一般的认知规律; 2、通过反例辨析和问题解决,培养合作交流、独立思考等良好的个性品质,以及勇于批判、敢于创新的科学精神。 三、重难点突破 “曲线的方程”与“方程的曲线”的概念是本节的重点,这是由于本节课是由直观表象上升到抽象概念的过程,学生容易对定义中为什么要规定两个关系产生困惑,原因是不理解两者缺一都将扩大概念的外延。由于学生已经具备了用方程表示直线、抛物线等实际模型,积累了感性认识的基础,所以可用举反例的方法来解决困惑,通过反例揭示“两者缺一”与直觉的矛盾,从而又促使学生对概念表述的严密性进行探索,自然地得出定义。为了强化其认识,又决定用集合相等的概念来解释曲线和方程的对应关系,并以此为工具来分析实例,这将有助于学生的理解,有助于学生通其法,知其理。 怎样利用定义验证曲线是方程的曲线,方程是曲线的方程是本节的难点。因为学生在作业中容易犯想当然的错误,通常在由已知曲线建立方程的时候,不验证方程的解为坐标的点在曲线上,就断然得出所求的是曲线方程。这种现象在高考中也屡见不鲜。为了突破难点,本节课设计了三种层次的问题,幻灯片9是概念的直接运用,幻灯片10是概念的逆向运用,幻灯片11是证明曲线的方程。通过这些例题让学生再一次体会“二者”缺一不可。 四、学情分析 此前,学生已知,在建立了直角坐标系后平面内的点和有序实数对之间建立了一一对应关系,已有了用方程(有时以函数式的形式出现)表示曲线的感性认识(特别是二元一次方程表示直线),现在要进一步研究平面内的曲线和含有两个变数的方程之间的关系,是由直观表象上升到抽象概念的过程,对学生有相当大的难度。学生在学习时容易产生的问题是,不理解“曲线上的点的坐标都是方程的解”和“以这个方程的解为坐标的点都是曲线上的点”这两句话在揭示“曲线和方程”关系时各自所起的作用。本节课的教学目标也只能是初步领会,要求学生能答出曲线和方程间必须满足两个关系时才能称作“曲线的方程”和“方程的曲线”,两者缺一不可,并能借助实例指出两个关系的区别。 【高中数学说课稿】相关文章: 高中数学说课稿11-23 高中数学数列说课稿07-16 高中数学说课稿09-30 高中数学说课稿范文06-17 高中数学说课稿范文09-10 高中数学《向量》说课稿范文603-04 高中数学说课稿(15篇)08-20 高中数学说课稿15篇09-18 高中数学说课稿三篇11-21 《反函数》高中数学说课稿09-25高中数学说课稿 篇3
高中数学说课稿 篇4
高中数学说课稿 篇5
高中数学说课稿 篇6
高中数学说课稿 篇7
高中数学说课稿 篇8
高中数学说课稿 篇9
高中数学说课稿 篇10