高中数学说课稿八篇
作为一无名无私奉献的教育工作者,就不得不需要编写说课稿,说课稿有助于顺利而有效地开展教学活动。怎么样才能写出优秀的说课稿呢?下面是小编帮大家整理的高中数学说课稿8篇,欢迎大家分享。
高中数学说课稿 篇1
一、教材分析
1、教材内容
本节课是苏教版第二章《函数概念和基本初等函数Ⅰ》§2.1.3函数简单性质的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题.
2、教材所处地位、作用
函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质.通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题.通过上述活动,加深对函数本质的认识.函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础.此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一.从方法论的角度分析,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法.
3、教学目标
(1)知识与技能:使学生理解函数单调性的概念,掌握判别函数单调性
的方法;
(2)过程与方法:从实际生活问题出发,引导学生自主探索函数单调性的概念,应用图象和单调性的定义解决函数单调性问题,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.
(3)情感态度价值观:让学生体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质.
4、重点与难点
教学重点(1)函数单调性的概念;
(2)运用函数单调性的定义判断一些函数的单调性.
教学难点(1)函数单调性的`知识形成;
(2)利用函数图象、单调性的定义判断和证明函数的单调性.
二、教法分析与学法指导
本节课是一节较为抽象的数学概念课,因此,教法上要注意:
1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主体参与的积极性.
2、在运用定义解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决.
3、在鼓励学生主体参与的同时,不可忽视教师的主导作用.具体体现在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成功地完成书面表达.
4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性.
在学法上:
1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力.
2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃.
三、 教学过程
教学 环节 | 教 学 过 程 | 设 计 意 图 |
问题 情境 | (播放中央电视台天气预报的音乐) 满足在定义域上的单调性的讨论. 2、重视学生发现的过程.如:充分暴露学生将函数图象(形)的特征转化为函数值(数)的特征的思维过程;充分暴露在正、反两个方面探讨活动中,学生认知结构升华、发现的过程. 3、重视学生的动手实践过程.通过对定义的解读、巩固,让学生动手去实践运用定义. 4、重视课堂问题的设计.通过对问题的设计,引导学生解决问题. |
高中数学说课稿 篇2
尊敬的各位专家、评委:
上午好!
今天我说课的课题是人教A版必修2第二章第二节《直线与圆的位置关系》。
我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。
一、教材分析
地位和作用
学生在初中的学习中已经了解直线与圆的位置关系,并知道可以利用直线与圆的焦点的个数以及圆心与直线的距离d与半径r的关系判断直线与圆的位置关系。但是,在初中学习时,利用圆心与直线的距离d与半径r的关系判断直线与圆的位置关系的方法却以结论性的形式呈现。在高一学习了解析几何后,要考虑的问题是如何掌握由直线和圆的方程判断直线与圆的位置关系的方法。解决问题的方法主要是几何法和代数法。其中几何法应该是在初中学习的基础上,结合高中所学的点到直线的距离公式求出圆心与直线的距离d后,比较与半径r的关系。从而作出判断,适可而止第引进用联立方程组转化为二次方程判别根的“纯代数判别法”,并与“几何法”欣赏比较,以决优劣,从而也深化了基本的“几何法”。含参数的问题、简单的弦的问题、切线问题等综合问题作为进一步的拓展提高或综合应用,也适度第引入课堂教学中,但以深化“判定直线与圆的位置关系”为目的,要控制难度。虽然学生学习解析几何了,但是把几何问题代数化无论是思维习惯还是具体转化方法,学生仍是似懂非懂,因此应不断强化,逐渐内化为学生的习惯和基本素质。
二、目标分析
(一)、教学目标
1、知识与技能
理解直线与圆的位置的种类;
利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离;
会用点到直线的距离来判断直线与圆的位置关系。
2、过程与方法
设直线L:ax+by+c=o,圆C:x2+y2+Dx+Ey+F=0,圆的半径为r,圆心(- ,- )到直线的距离为d,则判别直线与圆的位置关系的根据有以下几点:
当d >r时,直线l与圆c相离;
当d =r时,直线l与圆c相切;
当d
3、情态与价值观
让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想。
(二)、教学重点与难点
1、重点:直线与圆的位置关系的几何图形及其判断方法。
2、难点:用坐标判断直线与圆的位置关系。
三、教法学法分析
(一)、教法
教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:
1、启发引导学生思考、分析、实验、探索、归纳。
2、采用“从特殊到一般”、“从具体到抽象”的方法。
3、体现“对比联系”、“数形结合”及“分类讨论”的思想方法。
4、投影仪演示法。
在整个过程中,应以学生看,学生想,学生议,学生练为主体,教师在学生仔细观察、类比、想象的基础上通过问题串的形式加以引导点拨,对照,归纳,整理,只有这样,才能唤起学生对原有知识的.回忆,自觉地找到新旧知识的联系,使新学知识更牢固,理解更深刻。
(二)、学法
建构主义学习理论认为,学习是学生积极主动地建构知识的过程,学习应该与学生熟悉的背景相联系。在教学中,让学生在问题情境中,经历知识的形成和发展,通过观察、操作、归纳、探索、交流、反思参与学习,认识和理解数学知识,学会学习,发展能力。
四、教学过程分析
(一)、教学过程设计
问题 设计意图 师生活动
1、初中学过的平面几何中,直线与圆的位置关系有几类? 启发学生由图形获取判断直线与圆的位置关系的直观认知,引入新课 师:让学生之间进行讨论,交流,引导学生观察图形,导入新课
生:看图,并说出自己的看法
2、直线与圆的位置关系有几种? 得出直线与圆的位置关系的几何特征与种类 师:引导学生利用类比,归纳的思想,总结直线与圆的位置关系的种类,进一步神话数形结合的数学思想
生:学生观察图形,利用类比,归纳的思想,总结直线与圆的位置关
3、在初中,我们怎么样判断直线与圆的位置关系呢?如何用直线与圆的方程判断他们之间的位置关系呢?
你能说出判断直线与圆的位置关系的两
种方法吗? 使学生回忆初中的数学知识,培养抽象的概括能力。
抽象判断呢直线与圆的位置关系的思路和方法 师:引导学生回忆初中判断直线与圆的位置关系的思想过程
生:回忆直线与圆的位置关系的判断过程
师:引导学生从集合的角度判断直线与圆的方法
生:利用图形,寻求两种方法的数学思路
5、你能用两种判断直线与圆的位置关系的数学思路解决例1的问题吗? 体会判断直线与圆的位置关系的思想方法,关注量与量的之间的关系 师:指导学生阅读教材书上的例1
生:阅读教材书上的例1,并完成教材书上的136页的练习题2
6、通过学习教材书上的例1,你能总结下判断直线与圆的位置 关系的步骤吗? 是学生熟悉判断直线与圆的位置关系的基本步骤 生:于都例1
师:分析例1 ,并展示解答过程,启发学生概括判断直线与圆的位置关系的基本步骤,注意给学生留有思考的时间
生:交流自己总结的步骤
7、通过学习教材书上的例2,你能说明例2中体现的数学思想方法吗? 进一步深化数形结合的数学思想 师:指导学生阅读并完成教材书上的例2 ,启发学生利用数形结合的数学思想解决问题
生:阅读教材书上的例2 ,并完成137的练习题
8、通过例2的学习,你发现了什么? 明确弦长的运算方法 师:引导并启发学生探索直线与圆的相交弦的求法
生:通过分析,抽象,归纳,得出相交弦的运算方法
9、完成教材书上的136页的习题1234 巩固所学过的知识,进一步理解和掌握直线与圆的位置关系 师:指导学生完成练习题
生:互相讨论交流,完成练习题
10、课堂小结
教师提出下列问题让学生思考
通过直线与圆的位置关系的判断,你学到什么了?
判断直线与圆的位置关系有几种方法?他们的特点是什么?
如何求直线与圆的相交弦长?
(二)、作业设计
作业分为必做题和选择题,必做题是对本节课学生知识水平的反馈,选择题是对本节课内容的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生的自主发展、合作探究的学习氛围的形成。
我设计了以下作业:
必做题:课后习题A 1,2,3;
选择题:课后习题B1,2,3;
(三)、板书设计
板书要基本体现课堂的内容和方法,体现课堂进程,能简明扼要反映知识结构及其相互关系:能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。
五、评价分析
学生学习的结果评价固然重要,但是更重要的是学生学习的过程评价。我采用了及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。
以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。
谢谢!
高中数学说课稿 篇3
一、教材分析
1、教材的地位和作用:
函数是高中数学学习的重点和难点,函数的思想贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数及指数函数的图像和性质,同时也为今后研究对数函数及其性质打下坚实的基础。因此本节课内容十分重要,它对知识起着承上启下的作用。
2、教学的重点和难点:
根据这节课的内容特点及学生的实际情况,我将本节课教学重点定为指数函数的图像、性质及应用,难点定为指数函数性质的发现过程及指数函数与底的关系。
二、教学目标分析
基于对教材的理解和分析,我制定了以下教学目标:
1、理解指数函数的定义,掌握指数函数图像、性质及其简单应用。
2、通过教学培养学生观察、分析、归纳等思维能力,体会数形结合思想和分类讨论思想,增强学生识图用图的能力。
3、培养学生对知识的严谨科学态度和辩证唯物主义观点。
三、教法学法分析
1、学情分析
教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也逐步形成,但由于年龄的原因,思维尽管活跃敏捷,却缺乏冷静深刻。因此思考问题片面不严谨。
2、教法分析:基于以上学情分析,我采用先学生讨论,再教师讲授教学方法。一方面培养学生的观察、分析、归纳等思维能力。另一方面用教师的讲授来纠正由于学生思维过分活跃而走入的误区,和弥补知识的不足,达到能力与知识的双重效果。
3、学法分析
让学生仔细观察书中给出的实际例子,使他们发现指数函数与现实生活息息相关。再根据高一学生爱动脑懒动手的特点,让学生自己描点画图,画出指数函数的图像,继而用自己的语言总结指数函数的性质,学生经历了探究的过程,培养探究能力和抽象概括的能力。
四、教学过程
(一)创设情景
问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂 次后,得到的`细胞分裂的个数 与 之间,构成一个函数关系,能写出 与 之间的函数关系式吗?
学生回答: 与 之间的关系式,可以表示为 。
问题2:折纸问题:让学生动手折纸
学生回答:①对折的次数 与所得的层数 之间的关系,得出结论
②对折的次数 与折后面积 之间的关系(记折前纸张面积为1),得出结论
问题3:《庄子。天下篇》中写到“一尺之棰,日取其半,万世不竭”。
学生回答:写出取 次后,木棰的剩留量与 与 的函数关系式。
设计意图:
(1)让学生在问题的情景中发现问题,遇到挑战,激发斗志,又引导学生在简单的具体问题中抽象出共性,体验从简单到复杂,从特殊到一般的认知规律。从而引入两种常见的指数函数① ②
(2)让学生感受我们生活中存在这样的指数函数模型,便于学生接
受指数函数的形式。
(二)导入新课
引导学生观察,三个函数中,底数是常数,指数是自变量。
设计意图:充实实例,突出底数a的取值范围,让学生体会到数学来源于生产生活实际。函数 分别以 的数为底,加深对定义的感性认识,为顺利引出指数函数定义作铺垫。
(三)新课讲授
1.指数函数的定义
一般地,函数 叫做指数函数,其中 是自变量,函数的定义域是R。
含义:
设计意图:为 按两种情况得出指数函数性质作铺垫。若学生回答不合适,引导学生用区间表示:
问题:指数函数定义中,为什么规定“ ”如果不这样规定会出现什么情况?
设计意图:教师首先提出问题:为什么要规定底数大于0且不等于1呢?这是本节的一个难点,为突破难点,采取学生自由讨论的形式,达到互相启发,补充,活跃气氛,激发兴趣的目的。
对于底数的分类,可将问题分解为:
(1)若 会有什么问题?(如 ,则在实数范围内相应的函数值不存在)
(2)若 会有什么问题?(对于 , 都无意义)
(3)若 又会怎么样?( 无论 取何值,它总是1,对它没有研究的必要.)
师:为了避免上述各种情况的发生,所以规定 。
在这里要注意生生之间、师生之间的对话。
设计意图:认识清楚底数a的特殊规定,才能深刻理解指数函数的定义域是R;并为学习对数函数,认识指数与对数函数关系打基础。
教师还要提醒学生指数函数的定义是形式定义,必须在形式上一模一样才行,然后把问题引向深入。
1:指出下列函数那些是指数函数:
2:若函数 是指数函数,则
3:已知 是指数函数,且 ,求函数 的解析式。
设计意图 :加深学生对指数函数定义和呈现形式的理解。
2.指数函数的图像及性质
在同一平面直角坐标系内画出下列指数函数的图象
画函数图象的步骤:列表、描点、连线
思考如何列表取值?
教师与学生共同作出 图像。
设计意图:在理解指数函数定义的基础上掌握指数函数的图像与性质,是本节的重点。关键在于弄清底数a对于函数值变化的影响。对于 时函数值变化的不同情况,学生往往容易混淆,这是教学中的一个难点。为此,必须利用图像,数形结合。教师亲自板演,学生亲自在课前准备好的坐标系里画图,而不是采用几何画板直接得到图像,目的是使学生更加信服,加深印象,并为以后画图解题,采用数形结合思想方法打下基础。
利用几何画板演示函数 的图象,观察分析图像的共同特征。由特殊到一般,得出指数函数 的图象特征,进一步得出图象性质:
教师组织学生结合图像讨论指数函数的性质。
设计意图:这是本节课的重点和难点,要充分调动学生的积极性、主动性,发挥他们的潜能,尽量由学生自主得出性质,以便能够更深刻的记忆、更熟练的运用。
师生共同总结指数函数的性质,教师边总结边板书。
特别地,函数值的分布情况如下:
设计意图:再次强调指数函数的单调性与底数a的关系,并具体分析了函数值的分布情况,深刻理解指数函数值域情况。
(四)巩固与练习
例1: 比较下列各题中两值的大小
教师引导学生观察这些指数值的特征,思考比较大小的方法。
(1)(2)两题底相同,指数不同,(3)(4)两题可化为同底的,可以利用函数的单调性比较大小。
(5)题底不同,指数相同,可以利用函数的图像比较大小。
(6)题底不同,指数也不同,可以借助中介值比较大小。
例2:已知下列不等式 , 比较 的大小 :
设计意图:这是指数函数性质的简单应用,使学生在解题过程中加深对指数函数的图像及性质的理解和记忆。
(五)课堂小结
通过本节课的学习,你学到了哪些知识?
你又掌握了哪些数学思想方法?
你能将指数函数的学习与实际生活联系起来吗?
设计意图:让学生在小结中明确本节课的学习内容,强化本节课的学习重点,并为后续学习打下基础。
(六)布置作业
1、练习B组第2题;习题3-1A组第3题
2、A先生从今天开始每天给你10万元,而你承担如下任务:第一天给A先生1元,第二天给A先生2元,,第三天给A先生4元,第四天给A先生8元,依次下去,…,A先生要和你签定15天的合同,你同意吗?又A先生要和你签定30天的合同,你能签这个合同吗?
3、观察指数函数 的图象,比较 的大小。
高中数学说课稿 篇4
开始:各位专家领导, 好!
今天我将要为大家讲的课题是
首先,我对本节教材进行一些分析
一、教材结构与内容简析
本节内容在全书及章节的地位:《 》是高中数学新教材第 册( )第 章第 节。在此之前,学生已学习了
,这为过渡到本节的学习起着铺垫作用。本节内容是 部分,因此,在 中,占据 的地位。
数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生:
二、 教学目标
根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
1 基础知识目标:
2 能力训练目标:
3 创新素质目标:
4 个性品质目标:
三、 教学重点、难点、关键
本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点
重点: 通过 突出重点
难点: 通过 突破难点
关键:
下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:
四、 教法
数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生
“知其然”而且要使学生“知其所以然”,
我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的特点:
,应着重采用 的教学方法。即:
五、 学法
我们常说:“现代的`文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。
1、理论:
2、实践:
3、能力:
最后我来具体谈一谈这一堂课的教学过程:
六、 教学程序及设想
1、由 引入:
把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。
在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。
对于本题:
2、由实例得出本课新的知识点是:
3、讲解例题。
我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。在题中:
4、能力训练。
课后练习
使学生能巩固羡慕自觉运用所学知识与解题思想方法。
5、总结结论,强化认识。
知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。
6、变式延伸,进行重构。
重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。
7、板书。
8、布置作业。
针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。
结束:说课是教师面对同行和其它听众口头讲述具体课题的教学设想及其根据的新的教学研究形式。以上,我仅从说教材,说学情,说教法,说学法,说教学程序上说明了“教什么”和“怎么教”,阐明了“为什么这样教”。说课对我们大家仍是新事物,今后我也将进一步说好课,并希望各位专家领导对本堂说课提出宝贵意见。
注意时间掌握
六、注意灵活导入新知识点。
电脑课件
使用投影
根据时间进行增删
高中数学说课稿 篇5
各位领导、专家、同仁:您们好!
我说课的内容是高中数学第二册(上册)第七章《直线和圆的方程》中的第六节“曲线和方程”的第一课时,下面我的说课将从以下几个方面进行阐述:
一、教材分析
教材的地位和作用
“曲线和方程”这节教材揭示了几何中的形与代数中的数相统一的关系,为“作形判数”与“就数论形”的相互转化开辟了途径,这正体现了解析几何这门课的基本思想,对全部解析几何教学有着深远的影响。学生只有透彻理解了曲线和方程的意义,才算是寻得了解析几何学习的入门之径。如果以为学生不真正领悟曲线和方程的关系,照样能求出方程、照样能计算某些难题,因而可以忽视这个基本概念的教学,这不能不说是一种“舍本逐题”的偏见,应该认识到这节“曲线和方程”的开头课是解析几何教学的“重头戏”!
根据以上分析,确立教学重点是:“曲线的方程”与“方程的曲线”的概念;难点是:怎样利用定义验证曲线是方程的曲线,方程是曲线的方程。
二、教学目标
根据教学大纲的要求以及本教材的地位和作用,结合高二学生的认知特点确定教学目标如下:
知识目标:
1、了解曲线上的点与方程的解之间的一一对应关系;
2、初步领会“曲线的方程”与“方程的曲线”的概念;
3、学会根据已有的情景资料找规律,进而分析、判断、归纳结论;
4、强化“形”与“数”一致并相互转化的思想方法。
能力目标:
1、通过直线方程的引入,加强学生对方程的解和曲线上的点的一一对应关系的认识;
2、在形成曲线和方程的概念的教学中,学生经历观察、分析、讨论等数学活动过程,探索出结论,并能有条理的阐述自己的观点;
3、能用所学知识理解新的概念,并能运用概念解决实际问题,从中体会转化化归的思想方法,提高思维品质,发展应用意识。
情感目标:
1、通过概念的引入,让学生感受从特殊到一般的认知规律;
2、通过反例辨析和问题解决,培养合作交流、独立思考等良好的个性品质,以及勇于批判、敢于创新的科学精神。
三、重难点突破
“曲线的方程”与“方程的曲线”的概念是本节的重点,这是由于本节课是由直观表象上升到抽象概念的过程,学生容易对定义中为什么要规定两个关系产生困惑,原因是不理解两者缺一都将扩大概念的外延。由于学生已经具备了用方程表示直线、抛物线等实际模型,积累了感性认识的基础,所以可用举反例的方法来解决困惑,通过反例揭示“两者缺一”与直觉的矛盾,从而又促使学生对概念表述的严密性进行探索,自然地得出定义。为了强化其认识,又决定用集合相等的`概念来解释曲线和方程的对应关系,并以此为工具来分析实例,这将有助于学生的理解,有助于学生通其法,知其理。
怎样利用定义验证曲线是方程的曲线,方程是曲线的方程是本节的难点。因为学生在作业中容易犯想当然的错误,通常在由已知曲线建立方程的时候,不验证方程的解为坐标的点在曲线上,就断然得出所求的是曲线方程。这种现象在高考中也屡见不鲜。为了突破难点,本节课设计了三种层次的问题,幻灯片9是概念的直接运用,幻灯片10是概念的逆向运用,幻灯片11是证明曲线的方程。通过这些例题让学生再一次体会“二者”缺一不可。
四、学情分析
此前,学生已知,在建立了直角坐标系后平面内的点和有序实数对之间建立了一一对应关系,已有了用方程(有时以函数式的形式出现)表示曲线的感性认识(特别是二元一次方程表示直线),现在要进一步研究平面内的曲线和含有两个变数的方程之间的关系,是由直观表象上升到抽象概念的过程,对学生有相当大的难度。学生在学习时容易产生的问题是,不理解“曲线上的点的坐标都是方程的解”和“以这个方程的解为坐标的点都是曲线上的点”这两句话在揭示“曲线和方程”关系时各自所起的作用。本节课的教学目标也只能是初步领会,要求学生能答出曲线和方程间必须满足两个关系时才能称作“曲线的方程”和“方程的曲线”,两者缺一不可,并能借助实例指出两个关系的区别。
五、教法分析
新课程强调教师要调整自己的角色,改变传统的教育方式,教师要由传统意义上的知识的传授者和学生的管理者,转变为学生发展的促进者和帮助者,简单的教书匠转变为实践的研究者,或研究的实践者,在教育方式上,也要体现出以人为本,以学生为中心,让学生真正成为学习的主人而不是知识的奴隶,基于此,本节课遵循了概念学习的四个基本步骤,重点采用了问题探究和启发式相结合的教学方法。
从实例、到类比、到推广的问题探究,它对激发学生学习兴趣,培养学习能力都十分有利。启发引导学生得出概念,深化概念,并应用它去讨论、研究和解决问题。在生生合作,师生互动中解决问题,为提高学生分析问题、解决问题的能力打下了基础。
利用多媒体辅助教学,节省了时间,增大了信息量,增强了直观形象性。
六、学法分析
基础教育课程改革要求加强学习方式的改变,提倡学习方式的多样化,各学科课程通过引导学生主动参与,亲身实践,独立思考,合作探究,发展学生搜集处理信息的能力,获取新知识的能力,分析和解决问题的能力,以及交流合作的能力,基于此,本节课从实例引入→类比→推广→得概念→概念挖掘深化→具体应用→作业中的研究性问题的思考,始终让学生主动参与,亲身实践,独立思考,与合作探究相结合,在生生合作,师生互动中,使学生真正成为知识的发现者和知识的研究者。
七、教学过程分析
1、感性认识阶段——以旧带新、提出课题
高中数学说课稿 篇6
各位老师:
今天我说课的题目是《输入、输出语句和赋值语句》,内容选自于新课程人教A版必修3第一章第二节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析等四大方面来阐述我对这节课的分析和设计:
一、教材分析
1.教材所处的地位和作用
我们用自然语言或程序框图描述的算法,但是计算机是无法“看得懂,听得见”的。因此还需要将算法用计算机能够理解的程序设计语言翻译成计算机程序。程序设计语言有很多种。为了实现算法中的三种基本的逻辑结构:顺序结构、条件结构和循环结构,各种程序设计语言中都包含下列基本的算法语句:输入语句、输出语句、赋值语句、条件语句和循环语句.。而我们今天所要学习的是前三种算法语句,它们基本上是对应于算法中的顺序结构的。
2.教学的重点和难点
重点:正确理解输入语句、输出语句、赋值语句的作用。
难点:准确写出输入语句、输出语句、赋值语句。
二、教学目标分析
1.知识与技能目标:
(1)正确理解输入语句、输出语句、赋值语句的结构。
(2)会写一些简单的程序。
(3)掌握赋值语句中的“=”的作用。
2.过程与方法目标:
(1)让学生充分地感知、体验应用计算机解决数学问题的方法;并能初步操作、模仿。
(2)通过模仿,操作,探索的过程,体会算法的基本思想和基本语句的用途,提高学生应用数学软件的能力.
3.情感,态度和价值观目标
(1) 通过对三种语句的了解和实现,发展有条理的思考,表达的能力,提高逻辑思维能力.
(2) 学习算法语句,帮助学生利用计算机软件实现算法,活跃思维,提高学生的数学素养.
(3) 结合计算机软件的应用, 增强应用数学的意识,在计算机上实现算法让学生体会成功喜悦.
三、教学方法与手段分析
1.教学方法:引导与合作交流相结合,学生在体会三种语句结构格式的过程中,让学生积极参与,讨论交流,充分挖掘三种算法语句的格式特点及意义,在分析具体问题的过程中总结三种算法语句的思想与特征.
2.教学手段:运用计算机、图形计算器辅助教学
四、教学过程分析
1. 创设情境(约5分钟)
在课的开始,我要求学生们举出一些在日常生活中所应用到的有关计算机的例子,如:听MP3,看电影,玩游戏,打字排版,画卡通画,处理数据等等,并告诉他们在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具,然后接着问他们知不知道计算机到底是怎样工作的`?通过这个问题引出我们今天所要学习的内容。(板出课题)
在这个过程中,我让学生们将课本学习的内容与现实生活联系在了一起,这样能够激起他们对接下来的所要学习内容的兴趣,为整节课的学习打下一个良好的基础。
2.探究新知(约15分钟)
这里我先给出一个题目:用描点法作出函数
的图象,用描点法作函数的图象时,需要先求出自变量与函数的对应值。编写程序,分别计算当
时的函数值。(程序由我在课前准备好,教学中直接调用运行)
程序:INPUT“x=”;x 输入语句
y=x^3+3*x^2-24*x+30 赋值语句
PRINT x 输出语句
PRINT y 输出语句
END
(学生们先看,再跟着做,先不必深究该程序如何得来,只要模仿编写程序,通过运行自己编写的程序发现问题所在,进一步提高学生的模仿能力)
之后,我向学生们提问:在这个程序中,他们觉得哪些是输入语句、输出语句和赋值语句?(同学们互相交流、议论、猜想、概括出结论。提示:“input”和“print”的中文意思,还要请学生们注意到在赋值语句中的赋值号“=”与数学中的等号意义不同。)
此过程由老师引导,学生们自己讨论并总结出什么是输入语句、输出语句和赋值语句,这样比老师直接地将知识传授给他们,学习的效果更佳,同时也锻炼了学生们思考问题的能力和概括能力,激发学习兴趣。
然后给出一个思考题:在1.1.2中程序框图中的输入框,输出框的内容怎样用输入语句、输出语句来表达?(学生讨论、交流想法,然后请学生作答)这样可以及时应用刚刚学习的内容,并可以将前后所学知识联系起来。
3.例题精析(约12分钟)
在本环节中我为学生们准备了三道例题,这三道例题均选自课本的例2、例3和例4,学生通过这几道例题的讲解,结合计算机程序上机运用,可以掌握在程序设计语言中的前三种算法语句,体会到他们在程序中的意义和作用。
4.课堂精练(约4分钟)
P15 练习 1.
提问:如果要求输入一个摄氏温度,输出其相应的华氏温度,又该如何设计程序?(学生课后思考,讨论完成)通过提问启发学生们思考,发散思维。
5.课堂小结(约5分钟)
⑴输入语句、输出语句和赋值语句的结构特点及联系
⑵应用输入语句,输出语句,赋值语句编写一些简单的程序解决数学问题
⑶ 赋值语句中“=”的作用及应用
⑷编程一般的步骤:先写出算法,再进行编程。
6.布置作业
P23 习题1.2 A组 1(2)、2
[设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。
7.板书设计
高中数学说课稿 篇7
尊敬的各位专家、评委:
大家好!
我是卢龙县木井中学数学教师xx,我今天说课的题目是:人教A版普通高中课程标准实验教科书 数学必修5第一章第一节的第一课时《正弦定理》,依据新课程标准对教材的要求,结合我对教材的理解,我将从以下几个方面说明我的设计和构思。
一、教材分析
“解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验 “观察——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。
二、学情分析
我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。
三、教学目标
1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。
过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用”等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。
情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立“数学与我有关,数学是有用的,我要用数学,我能用数学”的理念。
2、教学重点、难点
教学重点:正弦定理的发现与证明;正弦定理的简单应用。
教学难点:正弦定理证明及应用。
四、教学方法与手段
为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用“问题教学法”,即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。
五、教学过程
为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程:
(一)创设情景,揭示课题
问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?
1671年两个法国天文学家首次测出了地月之间的距离大约为 385400km,你知道他们当时是怎样测出这个距离的吗?
问题2:在现在的.高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题, 其实并不难,只要你学好本章内容即可掌握其原理。(板书课题《解三角形》)
[设计说明]引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。
(二)特殊入手,发现规律
问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗?
引导启发学生发现特殊情形下的正弦定理
(三)类比归纳,严格证明
问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的Rt⊿ABC不小心写成了锐角⊿ABC,其它没有变,你说这个结论还成立吗?
[设计说明]此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。
问题5:好根据刚才我们的研究,说明这一结论在直角三角形和锐角三角形中都成立,于是,我们是否有了更为大胆的猜想,把条件中的锐角⊿ABC改为角钝角⊿ABC,其它不变,这个结论仍然成立?我们光说成立不行,必须有能力进行严格的理论证明,你有这个能力吗?下面我希望你能用实力告诉我,开始。(启发引导学生用多种方法加以研究证明,尤其是向量法,在下节余弦定理的证明中还要用,因此务必启发学生用向量法完成证明。)
[设计说明] 放手给学生实践的机会和时间,使学生真正的参与到问题解决的过程中去,让学生在学数学的实践中去感悟和提高数学的思维方法和思维习惯。同时,考虑到有部分同学基础较差,考个人或小组可能无法完成探究任务,教师在学生动手的同时,通过巡查,让提前证明出结论的同学上黑板完成,这样做一方面肯定了先完成的同学的先进性,锻炼了上黑板同学的解题过程的书写规范性,同时,也让从无从下手的同学有个参考,不至于闲呆着浪费时间。
问题6:由此,你能否得到一个更一般的结论?你能用比较精炼的语言把它概括一下吗?好,这就是我们这节课研究的主要内容,大名鼎鼎的正弦定理(此时板书课题并用红色粉笔标示出正弦定理内容)
教师讲解:告诉大家,其实这个大名鼎鼎的正弦定理是由伊朗著名的天文学家阿布尔─威发﹝940-998﹞首先发现与证明的。中亚细亚人阿尔比鲁尼﹝973-1048﹞给三角形的正弦定理作出了一个证明。也有说正弦定理的证明是13世纪的阿塞拜疆人纳速拉丁在系统整理前人成就的基础上得出的。不管怎样,我们说在1000年以前,人们就发现了这个充满着数学美的结论,不能不说也是人类数学史上的一个奇迹。老师希望21世纪的你能在今后的学习中也研究出一个被后人景仰的某某定理来,到那时我也就成了数学家的老师了。当然,老师的希望能否变成现实,就要看大家的了。
[设计说明] 通过本段内容的讲解,渗透一些数学史的内容,对学生不仅有数学美得熏陶,更能激发学生学习科学文化知识的热情。
(四)强化理解,简单应用
下面请大家看我们的教材2-3页到例题1上边,并自学解三角形定义。
[设计说明] 让学生看看书,放慢节奏,有利于学生消化和吸收刚才的内容,同时教师可以利用这段时间对个别学困生进行辅导,以减少掉队的同学数量,同时培养学生养成自觉看书的好习惯。
我们学习了正弦定理之后,你觉得它有什么应用?在三角形中他能解决那些问题呢? 我们先小试牛刀,来一个简单的问题:
问题7:(教材例题1)⊿ABC中,已知A=30,B=75,a=40cm,解三角形。
(本题简单,找两位同学上黑板完成,其他同学在底下练习本上完成,同学可以小声音讨论,完成后教师根据学生实践中发现的问题给予必要的讲评)
[设计说明] 充分给学生自己动手的时间和机会,由于本题是唯一解,为将来学生感悟什么情况下三角形有唯一解创造条件。
强化练习
让全体同学限时完成教材4页练习第一题,找两位同学上黑板。
问题8:(教材例题2)在⊿ABC中a=20cm,b=28cm,A=30,解三角形。
[设计说明]例题2较难,目的是使学生明确,利用正弦定理有两种可能,同时,引导学生对比例题1研究,在什么情况下解三角形有唯一解?为什么?对学有余力的同学鼓励他们自学探究与发现教材8页得内容:《解三角形的进一步讨论》
(五)小结归纳,深化拓展
1、正弦定理
2、正弦定理的证明方法
3、正弦定理的应用
4、涉及的数学思想和方法。
[设计说明] 师生共同总结本节课的收获的同时,引导学生学会自己总结,让学生进一步回顾和体会知识的形成、发展、完善的过程。
(六)布置作业,巩固提高
1、教材10页习题1.1A组第1题。
2、学有余力的同学探究10页B组第1题,体会正弦定理的其他证明方法。
证明:设三角形外接圆的半径是R,则a=2RsinA,b=2RsinB, c=2RsinC
[设计说明] 对不同水平的学生设计不同梯度的作业,尊重学生的个性差异,有利于因材施教的教学原则的贯彻。
高中数学说课稿 篇8
一、教材分析
1、教材地位和作用
二面角及其平面角的概念是立体几何最重要的概念之一。二面角的概念发展、完善了空间角的概念;而二面角的平面角不但定量描述了两相交平面的相对位置,同时它也是空间中线线、线面、面面垂直关系的一个汇集点。搞好本节课的学习,对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。教学大纲明确要求要让学生掌握二面角及其平面角的概念和运用。
2、教学目标
根据上面对教材的分析,并结合学生的认知水平和思维特点,确定本节课的教学目标:
认知目标:
(1)使学生正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。
(2)进一步培养学生把空间问题转化为平面问题的化归思想。
能力目标:以培养学生的创新能力和动手能力为重点。
(1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。
(2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。
教育目标:
(1)使学生认识到数学知识来自实践,并服务于实践,从而增强学生应用数学的意识。
(2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。
3、本节课教学的重、难点是两个过程的教学:
(1)二面角的平面角概念的形成过程。
(2)寻找二面角的平面角的方法的发现过程。
其理由如下:
(1)现行教材省略了概念的形成过程和方法的发现过程,没有反映出科学认识产生的辩证过程,与学生的认知规律相悖,给学生的学习造成了很大的困难,非常不利于学生创新能力、独立思考能力以及动手能力的培养。
(2)现代认知学认为,揭示知识的形成过程,对学生学习新知识是十分必要的。同时通过展现知识的发生、发展过程,给学生思考、探索、发现和创新提供了最大的空间,可以使学生在整个教学过程中始终处于积极的思维状态,进而培养他们独立思考和大胆求索的精神,这样才能全面落实本节课的教学目标。
二、指导思想和教学方法
在设计本教学时,主要贯彻了以下两个思想:
1、树立以学生发展为本的思想。通过构建以学习者为中心、有利于学生主体精神、创新能力健康发展的宽松的教学环境,提供学生自主探索和动手操作的机会,鼓励他们创新思考,亲身参与概念和方法的形成过程。2、坚持协同创新原则。把教材创新、教法创新以及学法创新有机地统一起来,因为只有教师创新地教,学生创新地学,才能营建一个有利于创新能力培养的良好环境。
首先是教材创新。
(1)在二面角的平面角概念引入上,我变课本上的“直接给出定义”为“类比——猜想——操作——定义”,也就是变封闭的、逻辑演绎体系为开放的、探索性的发现过程。
(2)在引入定义之后,例题讲解之前,引导学生发现寻找二面角的平面角的方法,为例题做好铺垫。
(3)重新编排例题。
其次是教法创新。采用多种创新的'教学方法,包括问题解决法、类比发现法、研究发现法等教学方法。
这组教学方法的特点是教师通过创设问题情境,引导学生逐步发现知识的形成过程,使教学活动真正建立在学生自主活动和探索的基础上,着力培养学生的创新能力。
这组教学方法使得学生在解决问题的过程中学数学,用数学,不仅强调动脑思考,而且强调动手操作,亲身体验,注重多感官参与、多种心理能力的投入,通过学生全面、多样的主体实践活动,促进他们独立思考能力、动手能力等多方面素质的整体发展。
教学手段的现代化有利于提高课堂效益,有利于创新人才的培养,根据本节课的教学需要,确定利用《几何画板》制作课件来辅助教学;此外,为加强直观教学,教师可预先做好一些模型。
最后是学法创新。意在指导学生会创新地学。
1、乐学:在整个学习过程中学生要保持强烈的好奇心和求知欲,不断强化自己的创新意识,全身心地投入到学习中去,成为学习的主人。
2、学会:在掌握基础知识的同时,学生要注意领会化归、类比联想等数学思想方法的运用,学会建立完善的认知结构。
3、会学:通过自已亲身参与,学生要领会复习类比和深入研究这两种知识创新的方法,从而既学到知识,又学会创新。
三、程序安排
(一)、二面角
1、揭示概念产生背景。
心理学研究表明,当学生明确数学概念的学习目的和意义时,就会对概念的学习产生浓厚的兴趣。创设问题情境,激发了学生的创新意识,营造了创新思维的氛围。
问题情境1、我们是如何定量研究两平行平面的相对位置的?
问题情境2、立几中常用距离和角来定量描述两个元素之间的相对位置,为什么不引入两平行平面所成的角?
问题情境3、我们应如何定量研究两个相交平面之间的相对位置呢?
通过这三个问题,打开了学生的原有认知结构,为知识的创新做好了准备;同时也让学生领会到,二面角这一概念的产生是因为研究两相交平面的相对位置的需要,从而明确新课题研究的必要性,触发学生积极思维活动的展开。
2、展现概念形成过程。
【高中数学说课稿】相关文章:
高中数学说课稿11-23
高中数学数列说课稿07-16
高中数学说课稿09-30
高中数学说课稿范文06-17
高中数学说课稿范文09-10
高中数学《向量》说课稿范文603-04
高中数学说课稿(15篇)08-20
高中数学说课稿15篇09-18
高中数学说课稿三篇11-21
《反函数》高中数学说课稿09-25