【热门】高中数学说课稿4篇
作为一名人民教师,通常会被要求编写说课稿,借助说课稿可以更好地组织教学活动。快来参考说课稿是怎么写的吧!下面是小编整理的高中数学说课稿4篇,欢迎大家借鉴与参考,希望对大家有所帮助。
高中数学说课稿 篇1
一、教材分析
1· 教材的地位和作用
在学习这节课以前,我们已经学习了振幅变换。本节知识是学习函数图象变换综合应用的基础,在教材地位上显得十分重要。
y=asin(ωx+φ)图象变换的学习有助于学生进一步理解正弦函数的图象和性质,加深学生对函数图象变换的理解和认识,加深数形结合在数学学习中的应用的认识。同时为相关学科的学习打下扎实的基础。
⒉教材的重点和难点
重点是对周期变换、相位变换规律的理解和应用。
难点是对周期变换、相位变换先后顺序的调整,对图象变换的影响。
⒊教材内容的安排和处理
函数y=asin(ωx+φ)图象这部分内容计划用3课时,本节是第2课时,主要学习周期变换和相位变换,以及两种变换的综合应用。
二、目的分析
⒈知识目标
掌握相位变换、周期变换的变换规律。
⒉能力目标
培养学生的观察能力、动手能力、归纳能力、分析问题解决问题能力。
⒊德育目标
在教学中努力培养学生的“由简单到复杂、由特殊到一般”的辩证思想,培养学生的探究能力和协作学习的能力。
⒋情感目标
通过学数学,用数学,进而培养学生对数学的兴趣。
三、教具使用
①本课安排在电脑室教学,每个学生都拥有一台计算机,所有的计算机由一套多媒体演示控制系统连接,以实现师生、生生的相互沟通。
②课前应先把本课所需要的几何画板课件通过多媒体演示系统发送到每一台学生电脑。
四、教法、学法分析
本节课以“探究——归纳——应用”为主线,通过设置问题情境,引导学生自主探究,总结规律,并能应用规律分析问题、解决问题。
以学生的自主探究为主要方式,把计算机使用的主动权交给学生,让学生主动去学习新知、探究未知,在活动中学习数学、掌握数学,并能数学地提出问题、解决问题。
五、教学过程
教学过程设计:
预备知识
一、问题探究
⑴师生合作探究周期变换
⑵学生自主探究相位变换
二、归纳概括
三、实践应用
教学程序
设计说明
〖预备知识
1我们已经学习了几种图象变换?
2这些变换的规律是什么?
帮助学生巩固、理解和归纳基础知识,为后面的学习作铺垫。促使学生学会对知识的归纳梳理。
〖问题探究
(一)师生合作探究周期变换
(1)自己动手,在几何画板中分别观察①y=sinx→y=sin2x;②y=sinx→y=sin
x图象的变换过程,指出变换过程中图象上每一个点的坐标发生了什么变化。
(2) 在上述变换过程中,横坐标的伸长和缩短与ω之间存在怎样的关系?
(二)学生自主探究相位变换
(1)我们初中学过的由y=f(x)→y=f(x+a)的图象变换规律是怎样的?
(2) 令f(x)=sinx,则f(x+φ)=sin (x+φ),那么y=sinx→y=sin (x+φ)的变换是不是也符合上述规律呢?请动手用几何画板加以验证。
设计这个问题的主要用意是让学生通过观察图象变换的过程,了解周期变换的基本规律。
设计这个问题意图是引导学生再次认真观察图象变换的过程,以便总结周期变换的规律。
师生合作探究已经让学生掌握了探究图象变换的基本方法,在此基础上,由学生自主探究相位变换规律,提高学生的综合能力。
〖归纳概括
通过以上探究,你能否总结出周期变换和相位变换的一般规律?
设计这个环节的.意图是通过对上述变换过程的探究,进而引导学生归纳概括,从现象到本质,总结出周期变换和相位变换的一般规律。
〖实践应用
(一)应用举例
(1)用五点法作出y=sin(2x+)一个周期内的简图。
(2)我们可以通过哪些方法完成y=sinx到y=sin(2x+)的图象变换
(3)请动手验证上述方法,把几何画板所得图象与用五点法作出的简图作比较,观察哪些方法是正确的,哪些方法是错误的。
(4)归纳总结
从上述的变换过程中,我们知道若f(x) =sin2x,则f(___)= sin(2x+),由f(x)→f(x+a)的变换规律得从y=sin2x →y= sin(2x+)的变换应该是_____.
(二)分层训练
a组题(基础题)
如何完成下列图象的变换:
①y=sin3x→y=sin(3x+1)
②y=sin(x+1) →y=sin(3x+1)
b组题(中等题)
如何完成下列图象的变换:
①y=sin3x→y=sin(3x+1)
②y=sin(x+1) →y=sin(3x+1)
③y=sinx →y=sin(3x+1)
c组题(拓展题)
①如何完成下列图象的变换:
y=sinx →y=sin(3x+1)
②我们知道,从f(x)到f(x)+k的变换可通过图象的上下平移(k>0上移)(k<0下移)|k|个单位得到。那么由y=f(x)→y=af(x)+k的变换中,振幅变换和上下平移变换是不是也有先后顺序呢?请通过实例加以验证。
让学生用五点法作出这个图象是为了验证变换方法是否正确。
给出这个问题的用意是开拓学生的思维,让学生从多角度思考问题。
这个步骤主要目的是培养学生的探究能力和动手能力。
这个问题的解决,是突破本课难点的关键。通过问题的解决,让学生理解如果先进行周期变换,而后进行相位变换,应特别关注x的变化量。
a组题重在基础知识的掌握,
由基础较薄弱的同学完成。
b组比a组增加了第③小题,
重在对两种变换的综合应用。
c组除了考查知识的综合应用,
还要求学生对新问题进行探究,
有较大难度,适合基础较好的
同学完成。
作业:
(1)必做题
(2)选做题
作业分为两种形式,体现作业的巩固性和发展性原则。选做题不作统一要求,供学有余力的学生课后研究。
六、评价分析
在本节的教与学活动中,始终体现以学生的发展为本的教育理念。在学生已有的认知基础上进行设问和引导,关注学生的认知过程,注意学生的品德、思维和心理等方面的发展。重视动手能力的培养,重视问题探究意识和能力的培养。同时,考虑不同学生的个性差异和发展层次,使不同的学生得到不同的发展,体现因材施教原则。
调节与反馈:
⑴验证两种变换的综合时,可能会出现有些学生无法观察到两种变换的区别这种情况,此时,教师除了加以引导外,还需通过教师演示和详细讲解加以解决。
⑵教学中可能出现个别学生无法正确操作课件的情况,这种情况下一定要强调学生的协作意识。
附:板书设计
高中数学说课稿 篇2
说课:古典概型
麻城理工学校谢卫华
(一)教材地位及作用:本节课是高中数学(必修
3)第三章概率的第二节古典概型的第一课时,是在
随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。
根据本节课的地位和作用以及新课程标准的具体要求,制订教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率;
根据本节课的内容,即尚未学习排列组合,以及学生的心理特点和认知水平,制定了教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的`个数和试验中基本事件的总数。
(二)根据新课程标准,并结合学生心理发展的需求,以及人格、情感、价值观的具体要求制订教学目标:
1.知识与技能
(1)理解古典概型及其概率计算公式(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率2.情感态度与价值观
概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神
(三)教学方法:根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征,观
察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。
(四)教学过程:
一、提出问题引入新课:在课前,教师布置任务,以数学小组为单位,完成下面两个模拟试验:试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成20次(最好是整十数),最后由科代表汇总;
试验二:抛掷一枚质地均匀的骰子,分别记录“1点”、“2点”、“3点”、“4点”、“5点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由科代表汇总。
教师最后汇总方法、结果和感受,并提出问题:1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?
二、思考交流形成概念:学生观察对比得出两个模拟试验的相同点和不同点,教师给出基本事件的概念,并对相关特点加以说明,加深新概念的理解。我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。
基本事件有如下的两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。给出例题1,让学生自行解决,从而进一步理解基本事件,然后让学生先观察对比,找出两个模拟试验和例1的共同特点,再概括总结得到的结论,(1)试验中所有可能出现的基本事件只有有限个(有限性);(2)每个基本事件出现的可能性相等(等可能性)。我们将具有这两个特点的概率模型称为古典概率概型,简称
古典概型。
三、观察分析推导公式:教师提出问题:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?引导学生类比分析两个模拟试验和例1的概率,先通过用概率加法公式求出随机事件的概率,再对比概率
结果,发现其中的联系。实验一中,出现正面朝上的概率与反面朝上的概率相等,即
1“出现正面朝上”所包含的基本事件的个数,试验二中,出现各个点的概率相等,即
P(“出现正面朝上”)==
2基本事件的总数3“出现偶数点”所包含的基本事件的个数,根据上述两则模拟试验,可以概括总结出,古典
P(“出现偶数点”)==
6基本事件的总数
概型计算任何事件的
的理解,教师提问:在使用古典概型的概率公式时,应该注意什么?学生回答,教师归纳:应该注意,(1)要判断该概率模型是不是古典概型;
(2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。
四、例题分析推广应用:通过例题2及3,巩固学生对已学知识的掌握,提高学生分析问题、解决问题的能力。让学生明确决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。适时利用列表数形结合和分类讨论等思想方法,既能形象直观地列出基本事件的总数,又能做到列举的不重不漏。
五、总结概括加深理解:学生小结归纳,不足的地方老师补充说明。使学生对本节课的知识有一个系统全面的认识,并把学过的相关知识有机地串联起来,便于记忆和应用,也进一步升华了这节课所要表达的本质思想,让学生的认知更上一层。
(五)布置作业P123练习1、2题(六)板书设计
3.2.13.2.1古典概型古典概型试验一试验二基本事件
古典概型概率
计算公式
例3列表
例1树状图古典概型
例2
以上是我对《古典概型概型》这节课的理解和处理方法,欢迎各位专家朋友批评指正,谢谢!
说课教案:古典概型
麻城理工学校谢卫华
高中数学说课稿 篇3
一、说教材
(1)说教材的内容和地位
本次说课的内容是人教版高一数学必修一第一单元第一节《集合》(第一课时)。集合这一课里,首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。然后,介绍了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握以及使用数学语言的基础。从知识结构上来说是为了引入函数的定义。因此在高中数学的模块中,集合就显得格外的举足轻重了。
(2)说教学目标
根据教材结构和内容以及教材地位和作用,考虑到学生已有的认知结构与心理特征,依据新课标制定如下教学目标:
1.知识与技能:掌握集合的基本概念及表示方法。了解"属于"关系的意义,掌握集合元素的特征。
2.过程与方法:通过情景设置提出问题,揭示课题,培养学生主动探究新知的习惯。并通过"自主、合作与探究"实现"一切以学生为中心"的理念。
3.情感态度与价值观:感受数学的人文价值,提高学生的学习数学的兴趣,由集合的.学习感受数学的简洁美与和谐统一美。同时通过自主探究领略获取新知识的喜悦。
(3)说教学重点和难点
依据课程标准和学生实际,我确定本课的教学重点为
教学重点:集合的基本概念及元素特征。
教学难点:掌握集合元素的三个特征,体会元素与集合的属于关系。
二、说教法和学法
接下来则是说教法、学法
教法与学法是互相联系和统一的,不能孤立去研究。什么样的教法必带来相应的学法,以遵循启发性原则为出发点,就本节课而言,我采用"生活实例与数学实例"相结合,"师生互动与课堂布白"相辅助的方法。通过不同层次的练习体验,凭借有趣、实用的教学手段,突出重点,突破难点。然而,学生是学习的主人,以学生为主体,创造条件让学生参与探究活动,()不仅提高了学生探究能力,更让学生获得学习的技能和激发学生的学习兴趣。因此,本次活动采用的学法有自主探究、观察发现、合作交流、归纳总结等。
总之,不管采取什么教法和学法,每节课都应不断研究学生的学习心理机制,不断优化教师本身的教学行为,自始至终以学生为主体,为学生创造和谐的课堂氛围。
三、说教学过程
接着我来说一下最重要的部分,本节课的教学过程:
这节课的流程主要分为六个环节:创设情境(引入目标)、自主探究(感知目标)、讨论辨析(理解目标)、变式训练(巩固目标)、课堂小结(自我评价)、作业布置(反馈矫正)。上述六个环节由浅入深,层层递进。 多层次、多角度地加深对概念的理解。 提高学生学习的兴趣,以达到良好的教学效果。
第一环节:创设问题情境,引入目标
课堂开始我将提出两个问题:
问题1:班级有20名男生,16名女生,问班级一共多少人?
问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛?
这里我会让学生以小组讨论的形式进行讨论问题,事实上小组合作的形式是本节课主要形式。
待学生讨论完毕以后我将作归纳总结:问题2已无法用学过的知识加以解释,这是与集合有关的问题,因此需用集合的语言加以描述(同时我将板书标题:集合)。
安排这一过程的意图是为了从实际问题引入,让学生了解数学来源于实际。从而激发学生参与课堂学习的欲望。
很自然地进入到第二环节:自主探究
让学生阅读教材,并思考下列问题:
(1)有那些概念?
(2)有那些符号?
(3)集合中元素的特性是什么?
安排这一过程的意图是给学生提供活动空间,让主体主动建构自己的知识结构。培养学生的探究能力。
让学生自主探究之后将进入第三环节:讨论辨析
小组合作探究(1)
让学生观察下列实例
(1)1~20以内的所有质数;
(2)所有的正方形;
(3)到直线 的距离等于定长 的所有的点;
(4)方程 的所有实数根;
通过以上实例,辨析概念:
(1)集合含义:一般地,某些指定的对象集在一起就成为一个集合,也简称集。而集合中的每个对象叫做这个集合的元素。
(2)表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
小组合作探究(2)——集合元素的特征
问题3:任意一组对象是否都能组成一个集合?集合中的元素有什么特征?
问题4:某单位所有的"帅哥"能否构成一个集合?由此说明什么?
集合中的元素必须是确定的
问题5:在一个给定的集合中能否有相同的元素?由此说明什么?
集合中的元素是不重复出现的
问题6:咱班的全体同学组成一个集合,调整座位后这个集合有没有变化?由此说明什么? 集合中的元素是没有顺序的
我如此设计的意图是因为:问题是数学的心脏,感受问题是学习数学的根本动力。
小组合作探究(3)——元素与集合的关系
问题7:设集合A表示"1~20以内的所有质数",那么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A中?
问题8:如果元素a是集合A中的元素,我们如何用数学化的语言表达?
a属于集合A,记作a∈A
问题9:如果元素a不是集合A中的元素,我们如何用数学化的语言表达?
a不属于集合A,记作aA
小组合作探究(4)——常用数集及其表示方法
问题10:自然数集,正整数集,整数集,有理数集,实数集等一些常用数集,分别用什么符号表示?
自然数集(非负整数集):记作 N
正整数集:
整数集:记作 Z
有理数集:记作 Q 实数集:记作 R
设计意图:由于不同的人对同一问题有不同的体验和理解。让学生通过合作交流相互得到启发,从而不断完善自己的知识结构。
第四环节:理论迁移 变式训练
1.下列指定的对象,能构成一个集合的是
① 很小的数
② 不超过30的非负实数
③ 直角坐标平面内横坐标与纵坐标相等的点
④ π的近似值
⑤ 所有无理数
A、②③④⑤ B、①②③⑤ C、②③⑤ D、②③④
第五环节:课堂小结,自我评价
1.这节课学习的主要内容是什么?
2.这节课主要解释了什么数学思想?
设计意图:引导学生对所学知识、思想方法进行小结,形成知识系统。教师用激励性的语言加一点评,让学生的思想敞亮的发挥出来。
第六环节:作业布置,反馈矫正
1.必做题 课本习题1.1—1、2、3.
2.选做题 已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求实数a 的值。
设计意图:充分考虑到学生的差异性,让所有学生都有成功的情感体验。
四、板书设计
好的板书就像一份微型教案,为了让学生直观易懂的看笔记,板书应设计得有条理性、概括性、指导性,所以我设计的板书如下:
集 合
1.集合的概念
2.集合元素的特征
(学生板演)
3.常见集合的表示
4.范例研究
高中数学说课稿 篇4
尊敬的各位专家、评委:
上午好!
今天我说课的课题是人教A版必修1第二章第二节《对数函数》。
我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。
一、教材分析
地位和作用
本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习。而对数函数作为这一阶段的重要的基本初等函数之一,它是在学生已经学习了指数函数及对数的内容,这为过渡到本节的学习起着铺垫作用。“对数函数”这节教材,是在没有学习反函数的基础上研究的指数函数和对数函数的自变量和因变量之间的关系。同时对数函数作为常用数学模型在解决社会生活中的实例有着广泛的应用,本节课的学习为学生进一步学习,参加生产和实际生活提供必要的基础知识。
二、目标分析
(一)、教学目标
根据《对数函数》在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下的教学目标:
1、知识与技能
(1)、进一步体会函数是描述变量之间的依赖关系的重要数学模型;
(2)、理解对数函数的概念、掌握对数函数的图像和性质;
(3)、由实际问题出发,培养学生探索知识和抽象概括知识等方面的能力。
2、过程与方法
引导学生观察,探寻变量和变量的对应关系,通过归纳、抽象、概括,自主建构对数函数的概念;体验结合旧知识探索新知识,研究新问题的快乐。
3、情感态度与价值观
通过对对数函数函数图像和性质的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。在民主、和谐的教学气氛中,促进师生的情感交流。
(二)教学重点、难点及关键
1、重点:对数函数的概念、图像和性质;在教学中只有突出这个重点,才能使教材脉络分明,才能有利于学生联系旧知识,学习新知识。
2、 难点:底数a对对数函数的图像和性质的影响。
[关键]对数函数与指数函数的类比教学。
由指数函数的图像过渡到对数函数的图像,通过类比分析达到深刻地了解对数函数的图像及其性质是掌握重点和突破难点的关键,在教学中一定要使学生的思考紧紧围绕图像,数形结合,加强直观教学,使学生能形成以图像为根本,以性质为主体的知识网络,同时在立体的讲解中,重视加强题组的设计和变形,使教学真正体现出由浅入深,由易到难,由具体到抽象的特点,从而突破重点、突破难点。
三、教法、学法分析
(一)、教法
教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:
1、启发引导学生思考、分析、实验、探索、归纳;
2、采用“从特殊到一般”、“从具体到抽象”的方法;
3、体现“对比联系”、“数形结合”及“分类讨论”的思想方法;
4、投影仪演示法。
在整个过程中,应以学生看,学生想,学生议,学生练为主体,教师在学生仔细观察、类比、想象的基础上通过问题串的形式加以引导点拨,与指数函数性质对照,归纳,整理,只有这样,才能唤起学生对原有知识的回忆,自觉地找到新旧知识的联系,使新学知识更牢固,理解更深刻。
(二)、学法
教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:
1、对照比较学习法:学习对数函数,处处与指数函数相对照;
2、探究式学习法:学生通过分析、探索,得出对数函数的定义;
3、自主性学习法:通过实验画出函数图像、观察图像自得其性质;
4、反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。
四、教学过程分析
(一)、教学过程设计
1、创设情境,提出问题。
在某细胞分裂过程中,细胞个数y是分裂次数x的函数y=2x,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式。
问题一:这是一个怎样的函数模型类型呢?
设计意图
复习指数函数
问题二:现在我们来研究相反的问题,如果知道了细胞的个数y,如何求分裂的次数x呢?这将会是我们研究的哪类问题?
设计意图
为了引出对数函数
问题三:在关系式x=log2y每输入一个细胞的个数y的值,是否一定都能得到唯一一个分裂次数x的值呢?
设计意图
(1)、为了让学生更好地理解函数;
(2)、为了让学生更好地理解对数函数的概念。
2、引导探究,建构概念。
(1)、对数函数的'概念:
同样,在前面提到的发射性物质,经过的时间x年与物质剩余量y的关系式为y=0.84x,我们也可以把它改成对数式x=log0.84y,其中x年夜可以看作物质剩余量y的函数,可见这样的问题在现实生活中还是不少的。
设计意图
前面的问题情景的底数为2,而这个问题情景的底数是0.84,我认为这个情景并不是多余的,其实它暗示了对数函数的底数与指数函数的底数一样有两类。
但是在习惯上,我们用x表示自变量,用y表示函数值。
问题一:你能把以上两个函数表示出来吗?
问题二:你能得到此类函数的一般式吗?
设计意图
体现出了由特殊到一般的数学思想
问题三:在y=logax中,a有什么限制条件吗?请结合指数式给以解释。
问题四:你能根据指数函数的定义给出对数函数的定义吗?
问题五:x=logay与y=ax中的x,y的相同之处是什么?不同之处是什么?
设计意图
前四个问题是为了引导出对数函数的概念,然而,光有前四个问题还是不够的,学生最容易忽略或最不容易理解的是函数的定义域,所以设计这个问题是为了让学生更好地理解对数函数的定义域。
(2)、对数函数的图像与性质
问题:有了研究指数函数的经历,你觉得下面该学习什么内容了?
设计意图
提示学生进行类比学习
合作探究1:借助计算器在同一直角坐标系中画出下列两组函数的图像,并观察各族函数图像,探求他们之间的关系。
y=2x;y=log2x y=( )x,y=log x
合作探究2:当a>0,a≠ 1,函数y=ax与y=logax图像之间有什么关系?
设计意图
在这儿体现“从特殊到一般”、“从具体到抽象”的方法。
合作探究3:分析你所画的两组函数的图像,对照指数函数的性质,总结归纳对数函数的性质。
设计意图
学生讨论并交流各自的而发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)。问题1:对数函数y=logax( a>0,a≠1,)是否具有奇偶性,为什么?
问题2:对数函数y=logax( a>0,a≠1,),当a>1时,x取何值,y>0,x取何值,y<0,当0 问题3:对数式logab的值的符号与a,b的取值之间有何关系? 知识拓展:函数y=ax称为y=logax的反函数,反之,也成立,一般地,如果函数y=f(x)存在反函数,那么它的反函数记作y=f-1(x)。 3、自我尝试,初步应用。 例1:求下列函数的定义域 y=log0.2(4-x)(该题主要考查对函数y=logax的定义域(0,+∞)这一限制条件,根据函数的解析式求得不等式,解对应的不等式。) 例2:利用对数函数的性质,比较下列各组数中两个数的大小: (1)、㏒2 3.4,log2 3.8; (2)、log0.5 1.8,log0.5 2.1; (3)、log7 5,log6 7 (在这儿要求学生通过回顾指数函数的有关性质比较大小的步骤和方法,完成完成前两题,最后一题可以通过教师的适当点拨完成解答,最后进行归纳总结比较数的大小常用的方法) 合作探究4:已知logm 4 设计意图 该题不仅运用了对数函数的图像和性质,还培养了学生数形结合、分类讨论等数学思想。 4、当堂训练,巩固深化。 通过学生的主体性参与,使学生深刻体会到本节课的主要内容和思想方法,从而实现对知识的再次深化。 采用课后习题1,2,3. 5、小结归纳,回顾反思。 小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。 (1)、小结: ①对数函数的概念 ②对数函数的图像和性质 ③利用对数函数的性质比较大小的一般方法和步骤, (2)、反思 我设计了三个问题 ①、通过本节课的学习,你学到了哪些知识? ②、通过本节课的学习,你最大的体验是什么? ③、通过本节课的学习,你掌握了哪些技能? (二)、作业设计 作业分为必做题和选做题,必做题是对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生的自主发展、合作探究的学习氛围的形成。 我设计了以下作业: 必做题:课后习题A 1,2,3; 选做题:课后习题B 1,2,3; (三)、板书设计 板书要基本体现课堂的内容和方法,体现课堂进程,能简明扼要反映知识结构及其相互关系:能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。 五、评价分析 学生学习的结果评价固然重要,但是更重要的是学生学习的过程评价。我采用了及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。 以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。 谢谢! 【高中数学说课稿】相关文章: 高中数学说课稿11-23 高中数学数列说课稿07-16 高中数学说课稿09-30 高中数学说课稿范文06-17 高中数学说课稿范文09-10 高中数学说课稿15篇09-18 高中数学说课稿三篇11-21 《反函数》高中数学说课稿09-25 高中数学《椭圆的标准方程》说课稿09-20 高中数学《向量》说课稿范文603-04