关于高中数学说课稿模板七篇
作为一名为他人授业解惑的教育工作者,通常需要准备好一份说课稿,通过说课稿可以很好地改正讲课缺点。那么优秀的说课稿是什么样的呢?以下是小编帮大家整理的高中数学说课稿7篇,欢迎大家分享。
高中数学说课稿 篇1
一、背景分析
1、学习任务分析:充要条件是中学数学中最重要的数学概念之一,它主要讨论了命题的条件与结论之间的逻辑关系,目的是为今后的数学学习特别是数学推理的学习打下基础。
教学重点:充分条件、必要条件和充要条件三个概念的定义。
2、学生情况分析:从学生学习的角度看,与旧教材相比,教学时间的前置,造成学生在学习充要条件这一概念时的知识储备不够丰富,逻辑思维能力的训练不够充分,这也为教师的教学带来一定的困难.因此,新教材在第一章的小结与复习中,把学生的学习要求规定为“初步掌握充要条件”(注意:新教学大纲的教学目标是“掌握充要条件的意义”),这是比较切合教学实际的.由此可见,教师在充要条件这一内容的新授教学时,不可拔高要求追求一步到位,而要在今后的教学中滚动式逐步深化,使之与学生的知识结构同步发展完善。
教学难点:“充要条件”这一节介绍了充分条件,必要条件和充要条件三个概念,由于这些概念比较抽象,中学生不易理解,用它们去解决具体问题则更为困难,因此”充要条件”的教学成为中学数学的难点之一,而必要条件的定义又是本节内容的难点.根据多年教学实践,学生对”充分条件”的概念较易接受,而必要条件的概念都难以理解.对于“B=A”,称A是B的必要条件难于接受,A本是B推出的结论,怎么又变成条件了呢?对这学生难于理解。
教学关键:找出A、B,根据定义判断A=B与B=A是否成立。教学中,要强调先找出A、B,否则,学生可能会对必要条件难以理解。
二、教学目标设计:
(一)知识目标:
1、正确理解充分条件、必要条件、充要条件三个概念。
2、能利用充分条件、必要条件、充要条件三个概念,熟练判断四种命题间的关系。
(二)能力目标:
1、培养学生的观察与类比能力:“会观察”,通过大量的问题,会观察其共性及个性。
2、培养学生的归纳能力:“敢归纳”,敢于对一些事例,观察后进行归纳,总结出一般规律。
(三)情感目标:
1、通过以学生为主体的教学方法,让学生自己构造数学命题,发展体验获取知识的感受。
2、通过对命题的四种形式及充分条件,必要条件的相对性,培养同学们的辩证唯物主义观点。
3、通过“会观察”,“敢归纳”,“善建构”,培养学生自主学习,勇于创新,多方位审视问题的创造技巧,敢于把错误的思维过程及弱点暴露出来,并在问题面前表现出浓厚的兴趣和不畏困难、勇于进取的精神。
三、教学结构设计:
数学知识来源于生活实际,生活本身又是一个巨大的数学课堂,我在教学过程中注重把教材内容与生活实践结合起来,加强数学教学的实践性,给数学找到生活的原型。我对本节课的数学知识结构进行创造性地“教学加工”,在教学方法上采用了“合作——探索”的开放式教学模式,使课堂教学体现“参与式”、“生活化”、“探索性”,保证学生对数学知识的主动获取,促进学生充分、和谐、自主、个性化的发展。
整体思路为:教师创设情境,激发兴趣,引出课题 引导学生分析实例,给出定义 例题分析(采用开放式教学) 知识小结 扩展例题 练习反馈
整个教学设计的主要特色:
(1)由生活事例引出课题;
(2)采用开放式教学模式;
(3)扩展例题是分析生活中的名言名句,又将数学融入生活中。
努力做到:“教为不教,学为会学”;要“授之以鱼”更要“授之以渔”。
四、教学媒体设计:
本节课是概念课,要避免单一的下定义作练习模式,应该努力使课堂元素更为丰富。这节课,我借助了多媒体课件,配合教学,添加了一些与例题相匹配的图片背景,以激发学生的学习兴趣,另外将学生的自编题利用多媒体课件展示出来分析,提高了课堂教学的效率。
五、教学过程设计:
第一,创设情境,激发兴趣,引出课题:
考虑到高一学生学习这一章的知识储备不足,我利用日常生活中的具体事例来提出本课的问题,并与学生共同利用原有的知识分析,事例中包括几个问题,为后面定义的分析埋下伏笔。
我用的第一个事例是:“做一件衬衫,需用布料,到布店去买,问营业员应该买多少?他说买3米足够了。”这样,就产生了“3米布料”与“做一件衬衫够不够”的关系。用这个事件目的`是为了第二部分引导学生得出充分条件的定义。这里要强调该事件包括:A:有3米布料;B:做一件衬衫够了。
第二个事例是:“一人病重,呼吸困难,急诊住院接氧气。”就产生了“氧气”与“活命与否”的关系。用这个事件的目的是为了第二部分引导学生得出必要条件的定义。这里要强调该事件包括:A:接氧气;B:活了。
用以上两个生活中的事例来说明数学中应研究的概念、关系,会使学生感到亲切自然,有助于提高兴趣和深入领会概念的内容,特别是它的必要性。
第二,引导学生分析实例,给出定义。
在第一部分激发起学生的学习兴趣后,紧接着开展第二部分,引导学生分析实例,让学生从事例中抽象出数学概念,得出本节课所要学习的充分条件和必要条件的定义。在引导过程中尽量放慢语速,结合事例帮助学生分析。
得出定义之后,这里有必要再利用本课前面两节的“逻辑联结词”和“四种命题”的知识来加强对必要条件定义的理解。(用前面的例子来说即:“活了,则说明在输氧”)可记作: 。
还应指出的是“必要条件”的定义,有如绕口令,要一次廓清,不可拖泥带水。这里,只要一下子“定义”清楚了,下边再解释“ ,A是B的必要条件”是怎么回事。这样处理,学生更容易接受“必要”二字。(因无A则无B,故欲有B,A是必要的)。
当两个定义分别给出后,我又对它们之间的区别加以分析说明,(充分条件可能会有多余,浪费,必要条件可能还不足(以使事件B成立))从而顺理成章地引出充要条件的定义(既是必要条件,又是充分条件,就称为充分必要条件,简称充要条件,记作: 。(不多不少,恰到好处)。使学生在此先对两个充分条件和必要条件两个概念的不同有了第一次的认识,第三部分再利用具体的数学事例来强化。
高中数学说课稿 篇2
说课内容:普通高中课程标准实验教科书(人教A版)《数学必修4》第二章第四节“平面向量的数量积”的第一课时---平面向量数量积的物理背景及其含义。
下面,我从背景分析、教学目标设计、课堂结构设计、教学过程设计、教学媒体设计及教学评价设计六个方面对本节课的思考进行说明。
一、 背景分析
1、学习任务分析
平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,在数学、物理等学科中应用十分广泛。本节内容教材共安排两课时,其中第一课时主要研究数量积的概念,第二课时主要研究数量积的坐标运算,本节课是第一课时。
本节课的主要学习任务是通过物理中“功”的事例抽象出平面向量数量积的概念,在此基础上探究数量积的性质与运算律,使学生体会类比的思想方法,进一步培养学生的抽象概括和推理论证的能力。其中数量积的概念既是对物理背景的抽象,又是研究性质和运算律的基础。同时也因为在这个概念中,既有长度又有角度,既有形又有数,是代数、几何与三角的最佳结合点,不仅应用广泛,而且很好的体现了数形结合的数学思想,使得数量积的概念成为本节课的核心概念,自然也是本节课教学的重点。
2、学生情况分析
学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再从概念出发,在与实数运算类比的基础上研究性质和运算律。这为学生学习数量积做了很好的铺垫,使学生倍感亲切。但也正是这些干扰了学生对数量积概念的理解,一方面,相对于线性运算而言,数量积的结果发生了本质的变化,两个有形有数的向量经过数量积运算后,形却消失了,学生对这一点是很难接受的;另一方面,由于受实数乘法运算的影响,也会造成学生对数量积理解上的偏差,特别是对性质和运算律的理解。因而本节课教学的难点数量积的概念。
二、 教学目标设计
《普通高中数学课程标准(实验)》 对本节课的要求有以下三条:
(1)通过物理中“功”等事例,理解平面向量数量积的含义及其物理意义。
(2)体会平面向量的数量积与向量投影的关系。
(3)能用运数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。
从以上的背景分析可以看出,数量积的概念既是本节课的重点,也是难点。为了突破这一难点,首先无论是在概念的引入还是应用过程中,物理中“功”的实例都发挥了重要作用。其次,作为数量积概念延伸的性质和运算律,不仅能够使学生更加全面深刻地理解概念,同时也是进行相关计算和判断的理论依据。最后,无论是数量积的性质还是运算律,都希望学生在类比的基础上,通过主动探究来发现,因而对培养学生的抽象概括能力、推理论证能力和类比思想都无疑是很好的载体。
综上所述,结合“课标”要求和学生实际,我将本节课的教学目标定为:
1、了解平面向量数量积的物理背景,理解数量积的含义及其物理意义;
2、体会平面向量的数量积与向量投影的关系,掌握数量积的`性质和运算律,
并能运用性质和运算律进行相关的运算和判断;
3、体会类比的数学思想和方法,进一步培养学生抽象概括、推理论证的能力。
三、课堂结构设计
本节课从总体上讲是一节概念教学,依据数学课程改革应关注知识的发生和发展过程的理念,结合本节课的知识的逻辑关系,我按照以下顺序安排本节课的教学:
即先从数学和物理两个角度创设问题情景,通过归纳和抽象得到数量积的概念,在此基础上研究数量积的性质和运算律,使学生进一步加深对概念的理解,然后通过例题和练习使学生巩固概念,加深印象,最后通过课堂小结提高学生认识,形成知识体系。
四、 教学媒体设计
和“大纲”教材相比,“课标”教材在本节课的内容安排上,虽然将向量的夹角在“平面向量基本定理”一节提前做了介绍,但却将原来分两节课完成的内容合并成一节,相比较而言本节课的教学任务加重了许多。为了保证教学任务的完成,顺利实现本节课的教学目标,考虑到本节课的实际特点,在教学媒体的使用上,我的设想主要有以下两点:
1、制作高效实用的电脑多媒体课件,主要作用是改变相关内容的呈现方式,以此来节约课时,增加课堂容量。
2、设计科学合理的板书(见下),一方面使学生加深对主要知识的印象,另一方面使学生清楚本节内容知识间的逻辑关系,形成知识网络。
平面向量数量积的物理背景及其含义
一、 数量积的概念 二、数量积的性质 四、应用与提高
1、 概念: 例1:
2、 概念强调 (1)记法 例2:
(2)“规定” 三、数量积的运算律 例3:
3、几何意义:
4、物理意义:
五、 教学过程设计
课标指出:数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下六个活动:
活动一:创设问题情景,激发学习兴趣
正如教材主编寄语所言,数学是自然的,而不是强加于人的。平面向量的数量积这一重要概念,和向量的线性运算一样,也有其数学背景和物理背景,为了体现这一点,我设计以下几个问题:
问题1:我们已经研究了向量的哪些运算?这些运算的结果是什么?
问题2:我们是怎么引入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的?
期望学生回答:物理模型→概念→性质→运算律→应用
问题3:如图所示,一物体在力F的作用下产生位移S,
(1)力F所做的功W= 。
(2)请同学们分析这个公式的特点:
W(功)是 量,
F(力)是 量,
S(位移)是 量,
α是 。
问题1的设计意图在于使学生了解数量积的数学背景,让学生明白本节课所要研究的数量积与向量的加法、减法及数乘一样,都是向量的运算,但与向量的线性运算相比,数量积运算又有其特殊性,那就是其结果发生了本质的变化。
问题2的设计意图在于使学生在与向量加法类比的基础上明了本节课的研究方法和顺序,为教学活动指明方向。
问题3的设计意图在于使学生了解数量积的物理背景,让学生知道,我们研究数量积绝不仅仅是为了数学自身的完善,而是有其客观背景和现实意义的,从而产生了进一步研究这种新运算的愿望。同时,也为抽象数量积的概念做好铺垫。
活动二:探究数量积的概念
1、概念的抽象
在分析“功”的计算公式的基础上提出问题4
问题4:你能用文字语言来表述功的计算公式吗?如果我们将公式中的力与位移推广到一般向量,其结果又该如何表述?
学生通过思考不难回答:功是力与位移的大小及其夹角余弦的乘积;两个向量的大小及其夹角余弦的乘积。这样,学生事实上已经得到数量积概念的文字表述了,在此基础上,我进一步明晰数量积的概念。
2、概念的明晰
已知两个非零向量
与
,它们的夹角为
,我们把数量 ︱
︱·︱
︱cos
叫做
与
的数量积(或内积),记作:
·
,即:
·
= ︱
︱·︱
︱cos
在强调记法和“规定”后 ,为了让学生进一步认识这一概念,提出问题5
问题5:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?并完成下表:
角
的范围0°≤
<90°
=90°0°<
≤180°
·
的符号
通过此环节不仅使学生认识到数量积的结果与线性运算的结果有着本质的不同,而且认识到向量的夹角是决定数量积结果的重要因素,为下面更好地理解数量积的性质和运算律做好铺垫。
3、探究数量积的几何意义
这个问题教材是这样安排的:在给出向量数量积的概念后,只介绍了向量投影的定义,直到讲完例1后,为了证明运算律的第三条才直接以结论的形式呈现给学生,我觉得这样安排似乎不太自然,还不如在给出向量投影的概念后,直接由学生自己归纳得出,所以做了调整。为此,我首先给出给出向量投影的概念,然后提出问题5。
如图,我们把│
│cos
(│
│cos
)叫做向量
在
方向上(
在
方向上)的投影,记做:OB1=│
│cos
问题6:数量积的几何意义是什么?
这样做不仅让学生从“形”的角度重新认识数量积的概念,从中体会数量积与向量投影的关系,同时也更符合知识的连贯性,而且也节约了课时。
4、研究数量积的物理意义
数量积的概念是由物理中功的概念引出的,学习了数量积的概念后,学生就会明白功的数学本质就是力与位移的数量积。为此,我设计以下问题 一方面使学生尝试计算数量积,另一方面使学生理解数量积的物理意义,同时也为数量积的性质埋下伏笔。
问题7:
(1) 请同学们用一句话来概括功的数学本质:功是力与位移的数量积 。
(2)尝试练习:一物体质量是10千克,分别做以下运动:
①、在水平面上位移为10米;
②、竖直下降10米;
③、竖直向上提升10米;
④、沿倾角为30度的斜面向上运动10米;
分别求重力做的功。
活动三:探究数量积的运算性质
1、性质的发现
教材中关于数量积的三条性质是以探究的形式出现的,为了很好地完成这一探究活动,在完成上述练习后,我不失时机地提出问题8:
(1)将尝试练习中的① ② ③的结论推广到一般向量,你能得到哪些结论?
(2)比较︱
·
︱与︱
︱×︱
︱的大小,你有什么结论?
在学生讨论交流的基础上,教师进一步明晰数量积的性质,然后再由学生利用数量积的定义给予证明,完成探究活动。
2、明晰数量积的性质
3、性质的证明
这样设计体现了教师只是教学活动的引领者,而学生才是学习活动的主体,让学生成为学习的研究者,不断地体验到成功的喜悦,激发学生参与学习活动的热情,不仅使学生获得了知识,更培养了学生由特殊到一般的思维品质。
活动四:探究数量积的运算律
1、运算律的发现
关于运算律,教材仍然是以探究的形式出现,为此,首先提出问题9
问题9:我们学过了实数乘法的哪些运算律?这些运算律对向量是否也适用?
通过此问题主要是想使学生在类比的基础上,猜测提出数量积的运算律。
学生可能会提出以下猜测: ①
·
=
·
②(
·
)
=
(
·
) ③(
+
)·
=
·
+
·
猜测①的正确性是显而易见的。
关于猜测②的正确性,我提示学生思考下面的问题:
猜测②的左右两边的结果各是什么?它们一定相等吗?
学生通过讨论不难发现,猜测②是不正确的。
这时教师在肯定猜测③的基础上明晰数量积的运算律:
2、明晰数量积的运算律
3、证明运算律
学生独立证明运算律(2)
我把运算运算律(2)的证明交给学生完成,在证明时,学生可能只考虑到λ>0的情况,为了帮助学生完善证明,提出以下问题:
当λ<0时,向量
与λ
,
与λ
的方向 的关系如何?此时,向量λ
与
及
与λ
的夹角与向量
与
的夹角相等吗?
师生共同证明运算律(3)
运算律(3)的证明对学生来说是比较困难的,为了节约课时,这个证明由师生共同完成,我想这也是教材的本意。
在这个环节中,我仍然是首先为学生创设情景,让学生在类比的基础上进行猜想归纳,然后教师明晰结论,最后再完成证明,这样做不仅培养了学生推理论证的能力,同时也增强了学生类比创新的意识,将知识的获得和能力的培养有机的结合在一起。
活动五:应用与提高
例1、(师生共同完成)已知︱
︱=6,︱
︱=4,
与
的夹角为60°,求
(
+2
)·(
-3
),并思考此运算过程类似于哪种运算?
例2、(学生独立完成)对任意向量
,b是否有以下结论:
(1)(
+
)2=
2+2
·
+
2
(2)(
+
)·(
-
)=
2—
2
例3、(师生共同完成)已知︱
︱=3,︱
︱=4, 且
与
不共线,k为何值时,向量
+k
与
-k
互相垂直?并思考:通过本题你有什么收获?
本节教材共安排了四道例题,我根据学生实际选择了其中的三道,并对例1和例3增加了题后反思。例1是数量积的性质和运算律的综合应用,教学时,我重点从对运算原理的分析和运算过程的规范书写两个方面加强示范。完成计算后,进一步提出问题:此运算过程类似于哪种运算?目的是想让学生在类比多项式乘法的基础上自己猜测提出例2给出的两个公式,再由学生独立完成证明,一方面这并不困难,另一方面培养了学生通过类比这一思维模式达到创新的目的。例3的主要作用是,在继续巩固性质和运算律的同时,教给学生如何利用数量积来判断两个向量的垂直,是平面向量数量积的基本应用之一,教学时重点给学生分析数与形的转化原理。
为了使学生更好的理解数量积的含义,熟练掌握性质及运算律,并能够应用数量积解决有关问题,再安排如下练习:
1、 下列两个命题正确吗?为什么?
①、若
≠0,则对任一非零向量
,有
·
≠0.
②、若
≠0,
·
=
·
,则
=
.
2、已知△ABC中,
=
,
=
,当
·
<0或
·
=0时,试判断△ABC的形状。
安排练习1的主要目的是,使学生在与实数乘法比较的基础上全面认识数量积这一重要运算,
通过练习2使学生学会用数量积表示两个向量的夹角,进一步感受数量积的应用价值。
活动六:小结提升与作业布置
1、本节课我们学习的主要内容是什么?
2、平面向量数量积的两个基本应用是什么?
3、我们是按照怎样的思维模式进行概念的归纳和性质的探究?在运算律的探究过程中,渗透了哪些数学思想?
4、类比向量的线性运算,我们还应该怎样研究数量积?
通过上述问题,使学生不仅对本节课的知识、技能及方法有了更加全面深刻的认识,同时也为下
一节做好铺垫,继续激发学生的求知欲。
布置作业:
1、课本P121习题2.4A组1、2、3。
2、拓展与提高:
已知
与
都是非零向量,且
+3
与7
-5
垂直,
-4
与 7
-2
垂直求
与
的夹角。
在这个环节中,我首先考虑检测全体学生是否都达到了“课标”的基本要求,因此安排了一组教材中的习题,目的是让所有的学生继续加深对数量积概念的理解和应用,为后续学习打好基础。其次,为了能让不同的学生在数学领域得到不同的发展,我又安排了一道有一定难度的问题供学有余力的同学选做。
六、教学评价设计
评价方式的转变是新课程改革的一大亮点,课标指出:相对于结果,过程更能反映每个学生的发展变化,体现出学生成长的历程。因此,数学学习的评价既要重视结果,也要重视过程。结合“课标”对数学学习的评价建议,对本节课的教学我主要通过以下几种方式进行:
1、 通过与学生的问答交流,发现其思维过程,在鼓励的基础上,纠正偏差,并对其进行定
性的评价。
2、在学生讨论、交流、协作时,教师通过观察,就个别或整体参与活动的态度和表现做出评价,以此来调动学生参与活动的积极性。
3、 通过练习来检验学生学习的效果,并在讲评中,肯定优点,指出不足。
4、 通过作业,反馈信息,再次对本节课做出评价,以便查漏补缺。
高中数学说课稿 篇3
函数的单调性
今天我说课的题目是《函数的单调性》,下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、教学过程五方面逐一加以分析和说明。
一、说教材
1、教材的地位和作用
本节内容选自北师大版高中数学必修1,第二章第3节。函数是高中数学的课程,它是描述事物运动变化的模型,而函数的单调性是函数的一大特征,它为我们之后的学习奠定重要基础。
2、学情分析
本节课的学生是高一学生,他们在初中阶段,通过一次函数、二次函数、反比例函数的学习已经对函数的增减性有了初步的感性认识。在高中阶段,用符号语言刻画图形语言,用定量分析解释定性结果,有利于培养学生的理性思维,为后续函数的学习作准备,也为利用倒数研究单调性的相关知识奠定了基础。
教学目标分析
基于以上对教材和学情的分析以及新课标教学理念,我将教学目标分为以下三个部分:
1.知识与技能(1)理解函数的单调性和单调函数的意义;
(2)会判断和证明简单函数的单调性。
2.过程与方法
(1)培养从概念出发,进一步研究性质的意识及能力;
(2)体会数形结合、分类讨论的数学思想。
3.情感态度与价值观
由合适的例子引发学生探求数学知识的欲望,突出学生的主观能动性,激发学生学习数学的兴趣。
三、教学重难点分析
通过以上对教材和学生的分析以及教学目标,我将本节课的重难点
重点:
函数单调性的概念,判断和证明简单函数的单调性。
难点:
1.函数单调性概念的认知
(1)自然语言到符号语言的转化;
(2)常量到变量的转化。
2.应用定义证明单调性的代数推理论证。
四、教法与学法分析
1、教法分析
基于以上对教材、学情的分析以及新课标的教学理念,本节课我采用启发式教学、多媒体辅助教学和讨论法。学生可以在多媒体中感受到数学在生活中的应用,启发式教学和讨论法发散学生思维,培养学生善于思考的能力。
2、学法分析
新课改理念告诉我们,学生不仅要学知识,更重要的是要学会怎样学习,为终生学习奠定扎实的基础。所以本节课我将引导学生通过合作交流、自主探索的方法理解函数的单调性及特征。
五、教学过程
为了更好的实现本课的三维目标,并突破重难点,我设计以下五个环节来进行我的教学。
(一)知识导入
温故而知新,我将先从之前学习的知识引入,给出一些函数,比如y=x、y=-x、y=|x|,让学生作出这些函数的图像,然后让学生讨论这些函数图像是上升的还是下降的,由此引入到我的新课。在这个过程中不仅可以检查学生掌握基本初等函数图像的情况,而且符合学生的认知结构,通过学生自主探究,从知识产生、发展的过程中构建新概念,有利于激发学生的思维和学习的.积极主动性。
(二)讲授新课
1.问题:分别做出函数y=x2,y=x+2的图像,指出上面的函数图象在哪个区间是上升的,在哪个区间是下降的?
通过学生熟悉的图像,及时引导学生观察,函数图像上A点的运动情况,引导学生能用自然语言描述出,随着x增大时图像变化规律。让学生大胆的去说,老师逐步修正、完善学生的说法,最后给出正确答案。
2.观察函数y=x2随自变量x变化的情况,设置启发式问题:
(1)在y轴的右侧部分图象具有什么特点?
(2)如果在y轴右侧部分取两个点(x1,y1),(x2,y2),当x1 (3)如何用数学符号语言来描述这个规律? 教师补充:这时我们就说函数y=x2在(0,+∞)上是增函数。 (4)反过来,如果y=f(x)在(0,+∞)上是增函数,我们能不能得到自变量与函数值的变化规律呢? 类似地分析图象在y轴的左侧部分。 通过对以上问题的分析,从正、反两方面领会函数单调性。师生共同总结出单调增函数的定义,并解读定义中的关键词,如:区间内,任意,当x1 仿照单调增函数定义,由学生说出单调减函数的定义。 教师总结归纳单调性和单调区间的定义。注意强调:函数的单调性是函数在定义域某个区间上的局部性质,也就是说,一个函数在不同的区间上可以有不同的单调性。 (我将给出函数y=x2,并画出这个函数的图像,让学生观察函数图像的特点,让他们描述函数图像的增减性,慢慢得到函数单调性的概念。在这个过程中,学生把对图像的感性认识转化为了数学关系,这种从特殊到一般的学习过程有利于学生对概念的理解) (三)巩固练习 1练习1:说出函数f(x)=的单调区间,并指明在该区间上的单调性。x 练习2:练习2:判断下列说法是否正确 ①定义在R上的函数f(x)满足f(2)>f(1),则函数是R上的增函数。 ②定义在R上的函数f(x)满足f(2)>f(1),则函数是R上不是减函数。 1③已知函数y=,因为f(-1) 1我将给出一些具体的函数,如y=,f(x)=3x+2让学生说出函数的单调区间,并指明在该区间x 上的单调性。通过这种练习的方式,帮助学生巩固对知识的掌握。 (四)归纳总结 我先让学生进行小结,函数单调性定义,判断函数单调性的方法(图像、定义),然后教师进行补充,在这样一个过程中既有利于学生巩固知识,也有利于教师对学生的学习情况有一定的了解,为下一节课的教学过程做好准备。 (五)布置作业 必做题:习题2-3A组第2,4,5题。 选做题:习题2-3B组第2题。 新课程理念告诉我们,不同的人在数学上可以获得不同的发展,因此要设计不同程度要求的习题。 二次函数的图像说课稿 今天我说课的题目是《二次函数的图像》,下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计五方面逐一加以分析和说明。 一、教材分析 教材的地位和作用 本节内容选自北师大版高中数学必修1,第二章第4.1节。二次函数的图像在教材中起着承上启下的作用。 学情分析 本节课的学生是高一学生,他们在初中的时候已经学习过有关内容,为本节课的学习打下了基础,另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图像由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的能力。 二、教学目标分析 基于以上对教材和学情的分析以及新课标教学理念,我将教学目标分为以下三个部分: 1.知识与技能 理解二次函数中参数a,b,c,h,k对其图像的影响; 2.过程与方法 通过体验对二次函数图像平移的研究方法,能迁移到其他函数图像的研究。 3.情感态度与价值观 通过本节的学习,进一步体会数形结合思想的作用,感受到数学中数与形的辩证统一。 三、教学重难点分析 通过以上对教材和学生的分析以及教学目标,我将本节课的重难点确定如下 重点: 二次函数图像的平移变换规律及应用。 难点: 探索平移对函数解析式的影响及如何利用平移变换规律求函数解析式,并能把平移变换规律迁移到其他函数。 四、教法与学法分析 1、教法分析 基于以上对教材、学情的分析以及新课改的要求,本节课我采用启发式教学、多媒体辅助教学和讨论法。学生可以在多媒体中感受到数学在生活中的.应用,启发式教学和讨论法发散学生思维,培养学生善于思考的能力。 2、学法分析 新课改理念告诉我们,学生不仅要学知识,更重要的是要学会怎样学习,为终生学习奠定扎实的基础。所以本节课我将引导学生通过合作交流、自主探索的方法进行学习。 五、教学过程 为了更好的实现本课的三维目标,并突破重难点,我将设计以下五个环节来进行我的教学。 (1)知识导入 温故而知新,我将先从之前学习的知识引入,给出一些函数,比如y=x2、y=2x2,让学生作出这些函数的图像,然后让学生比较这些函数图像的相同点和不同点,由此引入我的新课。一方面让学生总结复习已有知识,为后面的学习做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验。 (2)讲授新课 例1:画出函数y=2x2,y=2(x+1)2,y=2(x+1)2+3的图像 让学生画出他们的图像并观察函数图像的特点,再让学生与多媒体课件展示的图像进行对比,得出结论:若二次函数的解析式为y=ax2+bx+c,先将其化成y=a(x+h)2+k的形式,从而判断出y=ax2+bx+c是如何由y=ax2变换得到的。 前面的练习和例题,基本涵盖了二次函数图像平移变换的各种情况,启发并引导了学生将实例的结论进行总结,得出y=x2到y=ax2,y=ax2到y=a(x+h)2+k,y=ax2到y=ax2+bx+c(其中,a均不为0)的图像变化过程,即a>0开口向上,a<0开口向下;h正左移,h负右移;k正上移,k负下移。在这个过程中,学生把对图像的感性认识转化为了数学关系,这种从特殊到一般的学习过程有利于学生对概念的理解, (3)巩固练习 我将组织学生进行练习,完成课本44页1-3题。通过这种练习的方式,帮助学生巩固和加深二次函数中参数对图像的影响。 (4)归纳总结 我先让学生进行小结,然后教师进行补充,在这样一个过程中既有利于学生巩固知识,也有利于教师对学生的学习情况有一定的了解,可以进行适当反思,为下一节课的教学过程做好准备。 (5)布置作业 略 一、教学目标 1.掌握任意角的正弦、余弦、正切函数的定义(包括定义域、正负符号判断);了解任意角的余切、正割、余割函数的定义. 2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概念的产生、发展过程.领悟直角坐标系的工具功能,丰富数形结合的经验. 3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的辩证唯物主义世界观. 4.培养学生求真务实、实事求是的科学态度. 二、重点、难点、关键 重点:任意角的正弦、余弦、正切函数的定义、定义域、(正负)符号判断法. 难点:把三角函数理解为以实数为自变量的函数. 关键:如何想到建立直角坐标系;六个比值的确定性(α确定,比值也随之确定)与依赖性(比值随着α的变化而变化). 三、教学理念和方法 教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程. 根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用"启发探索、讲练结合"的方法组织教学. 四、教学过程 [执教线索: 回想再认:函数的概念、锐角三角函数定义(锐角三角形边角关系)--问题情境:能推广到任意角吗?--它山之石:建立直角坐标系(为何?)--优化认知:用直角坐标系研究锐角三角函数--探索发展:对任意角研究六个比值(与角之间的关系:确定性、依赖性,满足函数定义吗?)--自主定义:任意角三角函数定义--登高望远:三角函数的要素分析(对应法则、定义域、值域与正负符号判定)--例题与练习--回顾小结--布置作业] (一)复习引入、回想再认 开门见山,面对全体学生提问: 在初中我们初步学习了锐角三角函数,前几节课,我们把锐角推广到了任意角,学习了角度制和弧度制,这节课该研究什么呢? 探索任意角的三角函数(板书课题),请同学们回想,再明确一下: (情景1)什么叫函数?或者说函数是怎样定义的? 让学生回想后再点名回答,投影显示规范的定义,教师根据回答情况进行修正、强调: 传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,x叫做自变量,自变量x的取值范围叫做函数的定义域. 现代定义:设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数,在集合B中都有唯一确定的数f(x)和它对应,那么就称映射?:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A,其中x叫自变量,自变量x的取值范围A叫做函数的定义域. 设计意图: 函数和三角函数是一般和特殊的关系,是共性和个性的关系,学生已经学习了函数的概念,因此对三角函数的学习就是一个从一般到特殊的演绎的过程,也是以具体函数丰富函数概念的过程.教学经验表明:学生对函数两种定义的记忆是有一定困难的,容易遗忘,此处让学生对函数概念进行回想再认,目的在于明确函数概念的本质,为演绎学习任意角三角函数概念作好知识和认知准备. (情景2)我们在初中通过锐角三角形的边角关系,学习了锐角的正弦、余弦、正切等三个三角函数.请回想:这三个三角函数分别是怎样规定的? 学生口述后再投影展示,教师再根据投影进行强调: 设计意图: 学生在初中学习了锐角的三角函数概念,现在学习任意角的三角函数,又是一种推广和拓展的过程(类似于从有理数到实数的扩展).温故知新,要让学生体会知识的产生、发展过程,就要从源头上开始,从学生现有认知状况开始,对锐角三角函数的复习就必不可少. (二)引伸铺垫、创设情景 (情景3)我们已经把锐角推广到了任意角,锐角的三角函数概念也能推广到任意角吗?试试看,可以独立思考和探索,也可以互相讨论! 留时间让学生独立思考或自由讨论,教师参与讨论或巡回对学困生作启发引导. 能推广吗?怎样推广?针对刚才的问题点名让学生回答.用角的对边、临边、斜边比值的说法显然是受到阻碍了,由于4.1节已经以直角坐标系为工具来研究任意角了,学生一般会想到(否则教师进行提示)继续用直角坐标系来研究任意角的三角函数. 设计意图: 从学生现有知识水平和认知能力出发,创设问题情景,让学生产生认知冲突,进行必要的启发,将学生思维引上自主探索、合作交流的"再创造"征程. 教师对学生回答情况进行点评后布置任务情景:请同学们用直角坐标系重新研究锐角三角函数定义! 师生共做(学生口述,教师板书图形和比值): 把锐角α安装(如何安装?角的顶点与原点重合,角的始边与x轴非负半轴重合)在直角坐标系中,在角α终边上任取一点P,作Pm⊥x轴于m,构造一个RtΔomP,则∠moP=α(锐角),设P(x,y)(x>0、y>0),α的.临边om=x、对边mP=y,斜边长|oP∣=r. 根据锐角三角函数定义用x、y、r列出锐角α的正弦、余弦、正切三个比值,并补充对应列出三个倒数比值: 设计意图: 此处做法简单,思想重要.为了顺利实现推广,可以构建中间桥梁或公共载体,使之既与初中的定义一致,又能自然地迁移到任意角的情形.由于前一节已经以直角坐标系为工具来研究任意角了,学生自然能想到仍然以直角坐标系为工具来研究任意角的三角函数.初中以直角三角形边角关系来定义锐角三角函数,现在要用坐标系来研究,探索的结论既要满足任意角的情形,又要包容初中锐角三角函数定义.这是一个认识的飞跃,是理解任意角三角函数概念的关键之一,也是数学发现的重要思想和方法,属于策略性知识,能够形成迁移能力,为学生在以后学习中对某些知识进行推广拓展奠定了基础(譬如从平面向量到空间向量的扩展,从实数到复数的扩展等). (情景4)各个比值与角之间有怎样的关系?比值是角的函数吗? 追问:锐角α大小发生变化时,比值会改变吗? 先让学生想象思考,作出主观判断,再用几何画板动画演示,同时作好解释说明:保持r不变,让P绕原点o旋转即α在锐角范围内变化,六个比值随之变化的直观形象。结论是:比值随α的变化而变化. 引导学生观察图3,联系相似三角形知识, 探索发现: 对于锐角α的每一个确定值,六个比值都是 确定的,不会随P在终边上的移动而变化. 得出结论(强调):当α为锐角时,六个比值随α的变化而变化;但对于锐角α的每一个确定值,六个比值都是确定的,不会随P在终边上的移动而变化.所以,六个比值分别是以角α为自变量、以比值为函数值的函数. 设计意图: 初中学生对函数理解较肤浅,这里在学生思维的最近发展区进一步研究初中学过的锐角三角函数,在思维上更上了一个层次,扣准函数概念的内涵,突出变量之间的依赖关系或对应关系,是从函数知识演绎到三角函数知识的主要依据,是准确理解三角函数概念的关键,也是在认知上把三角函数知识纳入函数知识结构的关键.这样做能够使学生有效地增强函数观念. (三)分析归纳、自主定义 (情境5)能将锐角的比值情形推广到任意角α吗? 水到渠成,师生共同进行探索和推广: 对于一个任意角α,它的终边所在位置包括下列两类共八种情形(投影展示并作分析): 终边分别在四个象限的情形:终边分别在四个半轴上的情形: ; (指出:不画出角的方向,表明角具有任意性) 怎样刻画任意角的三角函数呢?研究它的六个比值: (板书)设α是一个任意角,在α终边上除原点外任意取一点P(x,y),P与原点o之间的距离记作r(r=>0),列出六个比值: α=kππ/2时,x=0,比值y/x、r/x无意义; α=kπ时,y=0,比值x/y、r/y无意义. 追问:α大小发生变化时,比值会改变吗? 先让学生想象思考,作出主观判断,再用几何画板动画演示,同时作好解释说明:使r保持不变,P绕原点o逆时针、顺时针旋转即角α变化,六个比值随之改变的直观形象。结论是:各比值随α的变化而变化. 再引导学生利用相似三角形知识,探索发现:对于任意角α的每一个确定值,六个比值都是确定的,不会随P在终边上的移动而变化. 综上得到(强调):当角α变化时,六个比值随之变化;对于确定的角α,六个比值(如果存在的话)都不会随P在角α终边上的改变而改变,六个比值是确定的(对应的多值性即诱导公式一留到下节课分析). 因此,六个比值分别是以角α为自变量、以比值为函数值的函数. 根据历史上的规定,对比值进行命名,指出英文记法和读法,记作(承前作复合板书): =sinα(正弦)=cosα(余弦)=tanα(正切) =cscα(余割)=sec(正弦)=cotα(余切) 教师强调:sinα表示sin与α的乘积吗?不是,sinα是函数记号,是一个整体,相当于函数记号f(x).其它几个三角函数也如此 投影显示图六,指导学生分析其对应关系,进一步体会其函数内涵: (图六) 指导学生识记六个比值及函数名称. 教师指出:正弦、余弦、正切、余切、正割、余割六个函数统称为三角函数,三角函数有非常丰富的知识和思想方法,我们以后主要学习正弦、余弦、正切三个函数的相关知识和方法,对于余切、正割、余割,只要同学们了解它们的定义就够了(遵循大纲要求). 引导学生进一步分析理解: 已知角的集合与实数集之间可以建立一一对应关系,对于每一个确定的实数,把它看成一个弧度数,就对应着唯一的一个角,从而分别对应着六个唯一的三角函数值.因此,(板书)三角函数可以看成是以实数为自变量的函数,这将为以后的应用带来很多方便. 设计意图: 把角的终边分别在四个象限、四条半轴上的情形全作出来,有利于对任意性的全面把握.明确比值存在与否的条件,为确定函数定义域作准备.动画演示比值与角之间的依赖性与确定性关系,深化理解三角函数内涵.引导学生在理解的基础上自主地对三角函数作出明确定义,是本节课的中心任务.由于学生刚学弧度制,对弧度制的理解有待于在以后的学习应用中逐步感悟,因此部分学生对"三角函数可以看成是以实数为自变量的函数"的理解有半信半疑之感,有待通过后续的应用加深理解. (四)探索定义域 (情景6)(1)函数概念的三要素是什么? 函数三要素:对应法则、定义域、值域. 正弦函数sinα的对应法则是什么? 正弦函数sinα的对应法则,实质上就是sinα的定义:对α的每一个确定的值,有唯一确定的比值y/r与之对应,即α→y/r=sinα. (2)布置任务情景:什么是三角函数的定义域?请求出六个三角函数的定义域,填写下表: 三角函数 sinα cosα tanα cotα cscα secα 定义域 引导学生自主探索: 如果没有特别说明,那么使解析式有意义的自变量的取值范围叫做函数的定义域,三角函数的定义域自然是指:使比值有意义的角α的取值范围. 关于sinα=y/r、cosα=x/r,对于任意角α(弧度数),r>0,y/r、x/r恒有意义,定义域都是实数集R. 对于tanα=y/x,α=kππ/2时x=0,y/x无意义,tanα的定义域是:{α|α∈R,且α≠kππ/2}.......... 教师指出:sinα、cosα、tanα的定义域必须紧扣三角函数定义在理解的基础上记熟,cotα、cscα、secα的定义域不要求记忆. (关于值域,到后面再学习). 设计意图: 定义域是函数三要素之一,研究函数必须明确定义域.指导学生根据定义自主探索确定三角函数定义域,有利于在理解的基础上记住它、应用它,也增进对三角函数概念的掌握. (五)符号判断、形象识记 (情景7)能判断三角函数值的正、负吗?试试看! 引导学生紧紧抓住三角函数定义来分析,r>0,三角函数值的符号决定于x、y值的正负,根据终边所在位置总结出形象的识记口诀: (同好得正、异号得负) sinα=y/r:上正下负横为0cosα=x/r:左负右正纵为0tanα=y/x:交叉正负 设计意图: 判断三角函数值的正负符号,是本章教材的一项重要的知识、技能要求.要引导学生抓住定义、数形结合判断和记忆三角函数值的正负符号,并总结出形象的识记口诀,这也是理解和记忆的关键. (六)练习巩固、理解记忆 1、自学例1:已知角α的终边经过点P(2,-3),求α的六个三角函数值. 要求:读完题目,思考:计算什么?需要准备什么?闭目心算,对照解答,模仿书面表达格式,巩固定义. 课堂练习: p19题1:已知角α的终边经过点P(-3,-1),求α的六个三角函数值. 要求心算,并提问中下学生检验,-------- 点评:角α终边上有无穷多个点,根据三角函数的定义,只要知道α终边上任意一个点的坐标,就可以计算这个角的三角函数值(或判断其无意义). 补充例题:已知角α的终边经过点P(x,-3),cosα=4/5,求α的其它五个三角函数值. 师生探索:已知y=-3,要求其它五个三角函数值,须知r=?,x=?.根据定义得=(方程思想),x>0,解得x=4,从而--------.解答略. 2、自学例2:求下列各角的六个三角函数值:(1)0;(2)π/2;(3)3π/2. 提问,据反馈信息作点评、修正. 师生探索:紧扣三角函数定义求解,首先要在终边上取定一点。终边在哪儿呢?取定哪一点呢?任意点、还是特殊点?要灵活,只要能够算出三角函数值,都可以。 取特殊点能使计算更简明。课堂练习:p19题2.(改编)填表: 角α(角度) 0° 90° 180° 270° 360° 角α(弧度) sinα cosα tanα 处理:要求取点用定义求解,针对计算过程提问、点评,理解巩固定义. 强调:终边在坐标轴上的角叫轴线角,如0、π/2、π、3π/2等,今后经常用到轴线角的三角函数值,要结合三角函数定义记熟这些值. 设计意图: 及时安排自学例题、自做教材练习题,一般性与特殊性相结合,进行适量的变式练习,以巩固和加深对三角函数概念的理解,通过课堂积极主动的练习活动进行思维训练,把"培养学生分析解决问题的能力"贯穿在每一节课的课堂教学始终. (七)回顾小结、建构网络 要求全体学生根据教师所提问题进行总结识记,提问检查并强调: 1.你是怎样把锐角三角函数定义推广到任意角的?或者说任意角三角函数具体是怎样定义的?(建立直角坐标系,使角的顶点与坐标原点重合,---,在终边上任意取定一点P,---) 2.你如何判断和记忆正弦、余弦、正切函数的定义域?(根据定义,------) 3.你如何记忆正弦、余弦、正切函数值的符号?(根据定义,想象坐标位置,-----) 设计意图: 遗忘的规律是先快后慢,回顾再现是记忆的重要途径,在课堂内及时总结识记主要内容是上策.此处以问题形式让学生自己归纳识记本节课的主体内容,抓住要害,人人参与,及时建构知识网络,优化知识结构,培养认知能力. (八)布置课外作业 1.书面作业:习题4.3第3、4、5题. 2.认真阅读p22"阅读材料:三角函数与欧拉",了解欧拉的生平和贡献,特别学习他对科学的挚着精神和坚忍不拔的顽强毅力!有兴趣的同学可以上网查阅欧拉的相关情况. 教学设计说明 一、对本节教材的理解 三角函数是描述周期运动现象的重要的数学模型,有非常广泛的应用. 星星之火,可以燎原. 直角三角形简单朴素的边角关系,以直角坐标系为工具进行自然地推广而得到简明的任意角的三角函数定义,紧紧扣住三角函数定义这个宝贵的源泉,自然地导出三角函数线、定义域、符号判断、值域、同角三角函数关系、多组诱导公式、多组变换公式、辅助角公式、图象和性质,本章教材就是这些内容的具体安排.定义直接用于解析几何(如直线斜率公式、极坐标、部分曲线的参数方程等),定义还是直接解决某些问题的工具,三角函数知识是物理学、高等数学、测量学、天文学的重要基础. 三角函数定义必然是学好全章内容的关键,如果学生掌握不好,将直接影响到后续内容的学习,由三角函数定义的基础性和应用的广泛性决定了本节教材的重点就是定义本身. 二、教学法加工 数学教材通常用抽象概括的形式化的数学书面语言阐述其知识和方法,教师只有通过教学法加工,始终贯彻"以学生的发展为本"的科学教育观,"将数学的学术形态转化为教育形态"(张奠宙语),引导学生积极主动地进行思考活动,直接参与体验数学知识产生发展的背景、过程,返璞归真,揭示本质,体会其中的思想和方法,学生只有这样才能真正理解掌握数学知识和方法,有效地发展智力、培养能力. 在本节教材中,三角函数定义是重点,三角函数线是难点,为了较好地突出重点和突破难点,分散重点和难点,同时兼顾例题、课堂练习的协调匹配,将不按教材顺序来进行教学,第一课时安排三角函数的定义(突出重点)、定义域、符号判断、例题1、2及p19课堂练习1、2、3,第二课时安排三角函数线、p15练习(突破难点)、诱导公式一及课本例题3、4和其它练习.本课例属第一课时. 教学经验表明,三角函数定义"简单易记",学生很容易轻视它,不少学生机械记忆、一知半解.本课例坚持"教师主导、学生主体"的原则,采用"启发探索、讲练结合"的常规教学方法,在学生的最近发展区围绕学生的学习目标设计了一系列符合学生认知规律的程序,通过多媒体辅助教学动画演示比值与角之间的依赖关系,拓展思维活动时空,力求使学生全员主动参与,积极思考,体会定义产生、发展的过程,通过思维过程来理解知识、培养能力. 将六个比值放在一起来研究,同时给出六个三角函数的定义,能够增强对比感和整体感,至于大纲对两组函数掌握与了解的不同要求,在下一步的教学中注意区分就行了. 教学中关于符号sinα、cosα、tanα的出场安排,教材首先对比值取名并给出英文记法,再研究它们与α的函数关系;另外可以先研究六个比值与α之间的函数关系,然后再对六个比值取名给出记法.后者更能突出函数内涵,揭示三角函数本质.本课例采用后者组织教学. 三、教学过程分析(见穿插在教案中的设计意图). 我将从教学理念;教材分析;教学目标;教学过程;教法、学法;教学评价六个方面来陈述我对本节课的设计方案。 一、教学理念 新的课程标准明确指出“数学是人类文化的重要组成部分,构成了公民所必须具备的一种基本素质。”其含义就是:我们不仅要重视数学的应用价值,更要注重其思维价值和人文价值。 因此,创造性地使用教材,积极开发、利用各种教学资源,创设教学情境,让学生通过主动参与、积极思考、与人合作交流和创新等过程,获得情感、能力、知识的全面发展。本节课力图打破常规,充分体现以学生为本,全方位培养、提高学生素质,实现课程观念、教学方式、学习方式的转变。 二、教材分析 三角函数是中学数学的重要内容之一,它既是解决生产实际问题的工具,又是学习高等数学及其它学科的基础。本节课是在学习了任意角的三角函数,两角和与差的三角函数以及正、余弦函数的图象和性质后,进一步研究函数y=Asin(ωx+φ)的简图的画法,由此揭示这类函数的图象与正弦曲线的关系,以及A、ω、φ的物理意义,并通过图象的变化过程,进一步理解正、余弦函数的性质,它是研究函数图象变换的一个延伸,也是研究函数性质的一个直观反映。共3课时,本节课是继学习完振幅、周期、初相变换后的第二课时。 本节课倡导学生自主探究,在教师的引导下,通过五点作图法正确找出函数y=sinx到y=sin(ωx+φ)的图象变换规律是本节课的重点。 难点是对周期变换、相位变换先后顺序调整后,将影响图象平移量的理解。因此,分析清不管哪种顺序变换,都是对一个字母x而言的变换成为突破本节课教学难点的关键。 依据《课标》,根据本节课内容和学生的实际,我确定如下教学目标。 三、教学目标 [知识与技能] 通过“五点作图法”正确找出函数y=sinx到y=sin(ωx+φ)的图象变换规律,能用五点作图法和图象变换法画出函数y=Asin(ωx+φ)的'简图,能举一反三地画出函数y=Asin(ωx+φ)+k和y=Acos(ωx+φ)的简图。 [过程与方法] 通过引导学生对函数y=sinx到y=sin(ωx+φ)的图象变换规律的探索,让学生体会到由简单到复杂,特殊到一般的化归思想;并通过对周期变换、相位变换先后顺序调整后,将影响图象变换这一难点的突破,让学生学会抓住问题的主要矛盾来解决问题的基本思想方法。 [情感态度与价值观] 课堂中,通过对问题的自主探究,培养学生的独立意识和独立思考能力;小组交流中,学会合作意识;在解决问题的难点时,培养学生解决问题抓主要矛盾的思想。在问题逐步深入的研究中唤起学生追求真理,乐于创新的情感需求,引发学生渴求知识的强烈愿望,树立科学的人生观、价值观。 四、教学过程(六问三练) 1、设置情境 《函数y=Asin(ωx+φ)的图象(第二课时)》说课稿。 各位评委:下午好! 我叫 ,来自 。今天我说课的课题《 》(第 课时)。下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计五方面逐一加以分析和说明。 一、教材分析 (一)教材的地位和作用 《 》是人教版出版社 第 册、第 单元的内容。《》既是 在知识上的延伸和发展,又是本章 的运用与巩固,也为下一章 教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了 的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。 概括地讲,本节课内容的地位体现在它的基础性,作用体现在它的工具性。 (二)、学情分析 通过前一阶段的教学,学生对 的认识已有了一定的认知结构,主要体现在三个层面: 知识层面:学生在已初步掌握了 。 能力层面:学生在初步已经掌握了用 初步具备了 思想。 情感层面:学生对数学新内容的学习有相当的兴趣和积极性。但探究问题的能力以及合作交流等方面发展不够均衡. (三)教学课时 本节内容分 课时学习。(本课时,品味数学中的和谐美,体验成功的乐趣。) 二、教学目标分析 根据教学大纲的要求、本节教材的特点和高中生的认知规律,本节课的`教学目标确定为: 知识与技能: 过程与方法: 情感态度: (例如:创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。在自主探究与讨论交流过程中,培养学生的合作意识和创新精神. 通过 对立统一关系的认识,对学生进行辨证唯物主义教育) 在探索过程中,培养独立获取数学知识的能力。在解决问题的过程中,让学生感受到成功的喜悦,树立学好数学的信心。在解答数学问题时,让学生养成理性思维的品质。 三、重难点分析 重点确定为: 要把握这个重点。关键在于理解 其本质就是 本节课的难点确定为: 要突破这个难点,让学生归纳 作铺垫。 四、教法与学法分析 (一)学法指导 教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。 (二)教法分析 本节课设计的指导思想是:现代认知心理学--建构主义学习理论。 建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。 本节课采用“诱思探究教学法”( 陕西师范大学教育研究所张熊飞教授)。在课堂教学中凸显学生主体地位的重要性,不再是以教师为中心去设计教学过程,而是以学生为主体去组织教学进程。把课堂真正地交给了学生,学生主体地位得以实现。 五、说教学过程 本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。 (一)创设情景…………………. (二)比旧悟新…………………. (三)归纳提炼………………… (四)应用新知,熟练掌握 ………………… (五)总结………………… (六)作业布置………………… (七)板书设计………………… 以上是我对本节课的一些粗浅的认识和构想,如有不妥之处,恳请各位专家批评指正。谢谢 著名美国数学家和数学教育家波利亚 包括“弄清问题”、“拟定计划”、“实现计划”和“回顾反思”四大步骤的解题全过程,它们就好比是寻找和发现解法的思维过程进行分解,使我们对解题的思维过程看得见,摸得着,易于操作。精髓是启发你去联想。联想什么?怎样联想? 一、教材分析: 1、教材的地位与作用。 本节内容是在学生学习了“事件的可能性的基础上来学习如何预测不确定事件(随机事件)发生的可能性的大小。”用概率预测随机发生的可能性大小,在日常生活、自然、科技领域有着广泛的应用,学习本单元知识,无论是今后继续深造(高中学习概率的乘法定理)还是参加社会实践活动都是十分必要的。概率的概念比较抽象,概率的定义学生较难理解。 在教材的处理上,采取小单元教学,本节课安排让学生了解求随机事件概率的两种方法,目的是让学生能够比较系统地理解概率的意义及求概率的方法,为下面学习求比较复杂的情况的概率打下基础。 2、重点与难点。 重点:对概率意义的理解,通过多次重复实验,用频率预测概率的方法,以及用列举法求概率的方法。 难点:对概率意义的理解和用列举法求概率过程中在各种可能性相同条件下某一事件可能发生的总数及总的结果数的分析。 二、目的分析: 知识与技能:掌握用频率预测概率和用列举法求概率方法。 过程与方法:组织学生自主探究,合作交流,引导学生观察试验和统计的结果,进而进行分析、归纳、总结,了解并感受概率的定义的过程,引导学生从数学的视角观察客观世界,用数学的思维思考客观世界,以数学的语言描述客观世界。 情感态度价值观:学生经历观察、分析、归纳、确认等数学活动,感受数学活动充满了探索性与创造性,感受量变与质变的对立统一规律,同时为概率的精准、新颖、独特的思维方法所震撼,激发学生学习数学的热情,增强对数学价值观的认识。 三、教法、学法分析: 引导学生自主探究、合作交流、观察分析、归纳总结,让学生经历知识(概率定义计算公式)的产生和发展过程,让学生在数学活动中学习数学、掌握数学,并能应用数学解决现实生活中的实际问题,教师是学生学习的组织者、合作者和指导者,精心设计教学情境,有序组织学生活动,让课堂充满生机活力,体现“教” 为“学”服务这一宗旨。 四、教学过程分析: 1、引导学生探究 精心设计问题一,学生通过对问题一的探究,一方面复习前面学过的“确定事件和不确定事件”的知识,为学好本节内容理清知识障碍,二是让学生明确为什么要学习概率(如何预测随机事件可能性发生大小)。引导学生对问题二的探究与观察实验数据,使学生了解概率这一重要概念的实际背景,感受并相信随机事件的发生中存在着统计规律性,感受数学规律的真实的发现过程。 2、归纳概括 学生从试验中得到的统计数字及概率呈现稳定在某一数值附近这一规律,让学生明确概率定义的'由来。 引导学生重新对问题一和问题二的探究,分析某事件发生的各种可能性在全部可能发生结果中所占比例,得到用列举法求概率的公式,引导学生进行理性思维,逻辑分析,既培养学生的分析问题能力,又让学生明确用列举法求概率这一简便快捷方法的合理性。 P(A)= = = (m 3、举例应用 ⑴引导学生对教材书例题、问题一、问题二中问题的进一步分析与探究,让学生掌握用列举法求概率的方法。 ⑵引导学生对练习中的问题思考与探究,巩固对概率公式的应用及加深对概率意义的理解。 深化发展 ⑴设置3个小题目,引导学生归纳、分析、总结,加深对知识与方法的理解,并学会灵活运用。 ⑵让学生设计活动内容,对知识进行升华和拓展,引导学生创造性地运用知识思考问题和解决问题,从而培养学生的创新意识和创新能力。 【高中数学说课稿】相关文章: 高中数学说课稿11-23 高中数学数列说课稿07-16 高中数学说课稿09-30 高中数学说课稿范文06-17 高中数学说课稿范文09-10 高中数学《向量》说课稿范文603-04 高中数学说课稿(15篇)08-20 高中数学说课稿15篇09-18 高中数学说课稿三篇11-21 《反函数》高中数学说课稿09-25 篇二:高一数学必修一说课稿
高中数学说课稿 篇4
高中数学说课稿 篇5
高中数学说课稿 篇6
高中数学说课稿 篇7