高中数学知识点总结

时间:2024-10-24 09:46:15 高中数学 我要投稿

高中数学知识点总结

  总结是事后对某一时期、某一项目或某些工作进行回顾和分析,从而做出带有规律性的结论,它在我们的学习、工作中起到呈上启下的作用,因此十分有必须要写一份总结哦。那么我们该怎么去写总结呢?下面是小编为大家收集的高中数学知识点总结,仅供参考,欢迎大家阅读。

高中数学知识点总结

高中数学知识点总结1

  三角函数关系

  倒数关系

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  商的关系

  sinα/cosα=tanα=secα/cscα

  cosα/sinα=cotα=cscα/secα

  平方关系

  sin^2(α)+cos^2(α)=1

  1+tan^2(α)=sec^2(α)

  1+cot^2(α)=csc^2(α)

  同角三角函数关系六角形记忆法

  构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

  倒数关系

  对角线上两个函数互为倒数;

  商数关系

  六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。

  *方关系

  在带有阴影线的三角形中,上面两个顶点上的三角函数值的*方和等于下面顶点上的三角函数值的*方。

  锐角三角函数定义

  锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

  正弦(sin)等于对边比斜边;sinA=a/c

  余弦(cos)等于邻边比斜边;cosA=b/c

  正切(tan)等于对边比邻边;tanA=a/b

  余切(cot)等于邻边比对边;cotA=b/a

  正割(sec)等于斜边比邻边;secA=c/b

  余割(csc)等于斜边比对边。cscA=c/a

  互余角的三角函数间的关系

  sin(90°-α)=cosα,cos(90°-α)=sinα,tan(90°-α)=cotα,cot(90°-α)=tanα.

  *方关系:

  sin^2(α)+cos^2(α)=1

  tan^2(α)+1=sec^2(α)

  cot^2(α)+1=csc^2(α)

  积的关系:

  sinα=tanα·cosα

  cosα=cotα·sinα

  tanα=sinα·secα

  cotα=cosα·cscα

  secα=tanα·cscα

  cscα=secα·cotα

  倒数关系:

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  圆的定理:

  1不在同一直线上的三点确定一个圆。

  2垂径定理垂直于弦的直径*分这条弦并且*分弦所对的两条弧

  推论1①*分弦(不是直径)的直径垂直于弦,并且*分弦所对的两条弧

  ②弦的垂直*分线经过圆心,并且*分弦所对的两条弧

  ③*分弦所对的一条弧的直径,垂直*分弦,并且*分弦所对的另一条弧

  推论2圆的两条*行弦所夹的弧相等

  3圆是以圆心为对称中心的中心对称图形

  4圆是定点的距离等于定长的点的集合

  5圆的内部可以看作是圆心的距离小于半径的点的集合

  6圆的外部可以看作是圆心的距离大于半径的点的集合

  7同圆或等圆的半径相等

  8到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  9定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

  10推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

  中考数学知识点3

  有理数的加法运算

  同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。

  合并同类项

  合并同类项,法则不能忘,只求系数和,字母、指数不变样。

  去、添括号法则

  去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。

  一元一次方程

  已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。

  *方差公式

  *方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

  完全*方公式

  完全*方有三项,首尾符号是同乡,首*方、尾*方,首尾二倍放中央;

  首±尾括号带*方,尾项符号随中央。

  因式分解

  一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用*方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个*方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。

  单项式运算

  加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。

  一元一次不等式解题步骤

  去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。

  一元一次不等式组的`解集

  大大取较大,小小取较小,小大、大小取中间,大小、小大无处找。

  一元二次不等式、一元一次绝对值不等式的解集

  大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。

  分式混合运算法则

  分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);

  乘法进行化简,因式分解在先,分子分母相约,然后再行运算;

  加减分母需同,分母化积关键;找出最简公分母,通分不是很难;

  变号必须两处,结果要求最简。

  分式方程的解法步骤

  同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍,别含糊。

  最简根式的条件

  最简根式三条件,号内不把分母含,幂指数(根指数)要互质、幂指比根指小一点。

  特殊点的坐标特征

  坐标*面点(x,y),横在前来纵在后;

  (+,+),(-,+),(-,-)和(+,-),四个象限分前后;

  x轴上y为0,x为0在y轴。

  象限角的*分线

  象限角的*分线,坐标特征有特点,一、三横纵都相等,二、四横纵却相反。

  *行某轴的直线

  *行某轴的直线,点的坐标有讲究,直线*行x轴,纵坐标相等横不同;

  直线*行于y轴,点的横坐标仍照旧。

  对称点的坐标

  对称点坐标要记牢,相反数位置莫混淆,x轴对称y相反,y轴对称x相反;

  原点对称记,横纵坐标全变号。

  自变量的取值范围

  分式分母不为零,偶次根下负不行;

  零次幂底数不为零,整式、奇次根全能行。

  函数图像的移动规律

  若把一次函数的解析式写成y=k(x+0)+b,二次函数的解析式写成y=a(x+h)2+k的形式,则可用下面的口诀

  “左右*移在括号,上下*移在末稍,左正右负须牢记,上正下负错不了”.

  一次函数图象与性质口诀

  一次函数是直线,图象经过三象限;

  正比例函数更简单,经过原点一直线;

  两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;

  k为负来左下展,变化规律正相反;

  k的绝对值越大,线离横轴就越远。

  二次函数图像与性质口诀

  二次函数抛物线,图象对称是关键;

  开口、顶点和交点,它们确定图象现;

  开口、大小由a断,c与y轴来相见;

  b的符号较特别,符号与a相关联;

  顶点位置先找见,y轴作为参考线;

  左同右异中为0,牢记心中莫混乱;

  顶点坐标最重要,一般式配方它就现;

  横标即为对称轴,纵标函数最值见.

  若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。

  反比例函数图像与性质口诀

  反比例函数有特点,双曲线相背离得远;

  k为正,图在一、三(象)限,k为负,图在二、四(象)限;

  图在一、三函数减,两个分支分别减.

  图在二、四正相反,两个分支分别增;

  线越长越近轴,永远与轴不沾边。

  特殊三角函数值记忆

  首先记住30度、45度、60度的正弦值、余弦值的分母都是2,正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可。

  三角函数的增减性:正增余减

  *行四边形的判定

  要证*行四边形,两个条件才能行,一证对边都相等,或证对边都*行,一组对边也可以,必须相等且*行.

  对角线,是个宝,互相*分“跑不了”,对角相等也有用,“两组对角”才能成。

  梯形问题的辅助线

  移动梯形对角线,两腰之和成一线;

  *行移动一条腰,两腰同在“△”现;

  延长两腰交一点,“△”中有*行线;

  作出梯形两高线,矩形显示在眼前;

  已知腰上一中线,莫忘作出中位线。

  添加辅助线歌

  辅助线,怎么添?找出规律是关键.

  题中若有角(*)分线,可向两边作垂线;

  线段垂直*分线,引向两端把线连;

  三角形边两中点,连接则成中位线;

  三角形中有中线,延长中线翻一番。

  圆的证明歌

  圆的证明不算难,常把半径直径连;

  有弦可作弦心距,它定垂直*分弦;

  直径是圆弦,直圆周角立上边,它若垂直*分弦,垂径、射影响耳边;

  还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连.

  同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;

  圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;

  直角相对或共弦,试试加个辅助圆;

  若是证题打转转,四点共圆可解难;

  要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;

  四边形有内切圆,对边和等是条件;

  如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦。

  中考数学知识点4小升初数学知识点1中考数学知识点1初中数学知识点总结1数学知识点总结1高中数学水*考知识点归纳1

  集合有关概念

  1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

  2、集合的中元素的三个特性:

  1.元素的确定性;

  2.元素的互异性;

  3.元素的无序性

  说明:

  (1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

  (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

  (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

  (4)集合元素的三个特性使集合本身具有了确定性和整体性。

  3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

  1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  2.集合的表示方法:列举法与描述法。

  注意啊:常用数集及其记法:

  非负整数集(即自然数集)记作:N

  正整数集N_或N+整数集Z有理数集Q实数集R

  关于“属于”的概念

  集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A

  列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

  描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

  ①语言描述法:例:{不是直角三角形的三角形}

  ②数学式子描述法:例:不等式x-3>2的解集是{x?Rx-3>2}或{_-3>2}

  4、集合的分类:

  1.有限集含有有限个元素的集合

  2.无限集含有无限个元素的集合

  3.空集不含任何元素的集合例:{_2=-5}

  高中数学水*考知识点归纳2

  集合的分类

  (1)按元素属性分类,如点集,数集。

  (2)按元素的个数多少,分为有/无限集

  关于集合的概念:

  (1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。

  (2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。

  (3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。

  集合可以根据它含有的元素的个数分为两类:

  含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。

  非负整数全体构成的集合,叫做自然数集,记作N;

  在自然数集内排除0的集合叫做正整数集,记作N+或N_;

  整数全体构成的集合,叫做整数集,记作Z;

  有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)

  实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。)

  1.列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}.

  有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。

  例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}.

  无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}.

  2.描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。

  例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”

  而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为

  {x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括号内竖线左边的X表示这个集合的任意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。

  一般地,如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为{x∈I│p(x)}

  它表示集合A是由集合I中具有性质p(x)的所有元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。

  例如:集合A={x∈R│x2-1=0}的特征是X2-1=0

  高中数学水*考知识点归纳3

  1、导数的定义:在点处的导数记作.

  2.导数的几何物理意义:曲线在点处切线的斜率

  ①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。

  3.常见函数的导数公式:①;②;③;

  ⑤;⑥;⑦;⑧。

  4.导数的四则运算法则:

  5.导数的应用:

  (1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;

  注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

  (2)求极值的步骤:

  ①求导数;

  ②求方程的根;

  ③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;

  (3)求可导函数值与最小值的步骤:

  ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。

  品味,经典,不落后,爱人,被人爱,发现美,寻找各种美。用心阅读,用心感受。

高中数学知识点总结2

  1、把一个分式的分子与分母的公因式约去,叫做分式的'约分.

  2、分式进行约分的目的是要把这个分式化为最简分式.

  3、如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.

  4、分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.

  5、分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.

  6、注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.

【高中数学知识点总结】相关文章:

高中数学数列知识点总结07-26

高中数学基本知识点总结11-26

高中数学选修2-2知识点总结11-19

高中数学总结02-28

高中数学教学总结01-29

高中数学教研总结01-26

高中数学活动总结11-05

高中数学总结(15篇)03-01

高中数学总结15篇03-01