高中数学说课稿

时间:2025-06-28 09:47:17 高中数学 我要投稿

关于高中数学说课稿锦集六篇

  作为一位杰出的老师,通常需要准备好一份说课稿,说课稿有助于顺利而有效地开展教学活动。说课稿要怎么写呢?下面是小编为大家收集的高中数学说课稿6篇,希望能够帮助到大家。

关于高中数学说课稿锦集六篇

高中数学说课稿 篇1

  一、教材地位与作用

  本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理的知识非常重要。

  二、学情分析

  作为高一学生,同学们已经掌握了基本的三角函数,特别是在一些特殊三角形中,而学生们在解决任意三角形的边与角问题,就比较困难。

  教学重点:正弦定理的内容,正弦定理的证明及基本应用。

  教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

  根据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标

  教学目标分析:

  知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。

  能力目标:探索正弦定理的证明过程,用归纳法得出结论。

  情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。

  三、教法学法分析

  教法:采用探究式课堂教学模式,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。

  学法:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,动手尝试相结合,增强学生由特殊到一般的数学思维能力,锲而不舍的求学精神。

  四、教学过程

  (一)创设情境,布疑激趣

  “兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

  (二)探寻特例,提出猜想

  1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

  2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

  3.让学生总结实验结果,得出猜想:

  在三角形中,角与所对的边满足关系

  这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

  (三)逻辑推理,证明猜想

  1.强调将猜想转化为定理,需要严格的理论证明。

  2.鼓励学生通过作高转化为熟悉的.直角三角形进行证明。

  3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

  4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明。

  (四)归纳总结,简单应用

  1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

  2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

  3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

  (五)讲解例题,巩固定理

  1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。

  例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

  2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。

  例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。

  (六)课堂练习,提高巩固

  1.在△ABC中,已知下列条件,解三角形。

  (1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm

  2.在△ABC中,已知下列条件,解三角形。

  (1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°

  学生板演,老师巡视,及时发现问题,并解答。

  (七)小结反思,提高认识

  通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?

  1.用向量证明了正弦定

  理,体现了数形结合的数学思想。

  2.它表述了三角形的边与对角的正弦值的关系。

  3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

  (从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)

  (八)任务后延,自主探究

  如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。

高中数学说课稿 篇2

  一、 说教材

  (一)教材的地位和作用

  本节内容着重介绍了三角形的三种特殊线段,已学过的过直线外一点作已知直线的垂线、线段的中点、角的平分线等知识是学习本节新知识的基础,其中三角形的高学生从小学起已开始接触,教材从学生已有认知出发,从高入手,利用图形,给高作了具体定义,使学生了解三角形的高为线段,进而引出三角形的另外几种特殊线段——中线、角平分线。通过本节内容学习,可使学生掌握三角形的高、中线、角平分线与垂线、角平分线的联系与区别。通过学习作图、观察与探究,会发现三角形的三条高所在的直线、三条角平分线、三条中线都各自交于一点,这为以后三角形的内心、重心等知识的学习打下一定的基础,另外,本节内容也是日后学习等腰三角形等特殊三角形的垫脚石。故学好本节内容是十分必要的。因此,对三角的高、中线、角平分线定义的理解及画法的掌握是本节教学的重点,而三角形的高由于三角形的形状改变而使其位置呈现多样性,学生难以掌握,故在各类三角形中作出它们是本课的难点。

  (二)教学目标分析

  本节课的教学设计力图体现“尊重学生,注重发展”的教学理念,着重培养和发展学生基本作图能力、语言表达能力、观察能力等,根据这一目的确定本节教学目标为:

  1、理解三角形的高、中线、角平分线的概念

  2、能正确作出一个三角形的高、中线、角平分线

  3、通过观察、探究、画一画、折一折与描述等数学活动,感受数学语言的准确性,提高观察能力,语言表达能力,发展推理能力。

  重点:掌握三角形的高、中线、角平分线的概念,并能在具体三角形中画出它们

  难点:在各种三角形中作出它们的高

  二、 说教法

  1、情境创设法 :利用张师傅如何将一块三角形的地分成面积相等的两块三角形地创设问题情境,并引导学生去简单分析思路,目的使数学能密切联系实际体现知识的.形成和应用过程。以实际问题为出发点和归宿,更能贴近学生生活,以激发学生对学习本节内容的求知欲,培养他们运用所学知识解决问题的能力。

  2、加强学生学习的主动性与探究性 在课堂中要充分调动学生自主学习的潜能,让他们自由探究中发现,从而发展他们的创新能力,让他们感受到成功的喜悦。学生在画一画、折一折、何三个探究活动中体验数学知识的形成过程。当学生在探究过程中遇到困难时,才取消组建的交流与合作,充分发挥学生的团队作用,以更好地激发学生的积极思维,得到更大的收获。

  3、运用多媒体等作为教辅工具,增强学生的直观感受,扫除学生从形象思维难以跨越到抽象思维的障碍,突出重点,突破难点。

  三、说学法

  1、本节重点是三角形的三种重要线段,难点是对三角形的角平分线、中线、高的准确理解、作图与正确运用,而突破难点的关键是运用好数形结合的数学思想从画图入手,从大量的活动入手获得三种线段的直观形象,进一步架起数与形之间的桥梁,加强知识间的相互联系。

  2、小组讨论、合作探究,既可让学生互相启发,互相促进,积极交流,表达思想又可促进数学思考,扩大和加深对问题的认识,本节课中我让学生以小组进行探究,归纳图形特征,做到仔细观察,大胆探索,勇于发现,抽象概括。让学生通过探索活动来发现结论,经历知识的“再发现”过程,从而改变学生学习的方式,发展创新思维能力。

  四、说教学过程:

  1、创设问题情境,引出新知: 从生活实例引出新问题,调动学生学习积极性

  2、预习检查:以题组的形势

  考点1:三角形的高

  1.如图7.1.2-1,在△ABC中,BC边上的高是________;在△AFC中,CF边上的高是________;在△ABE中,AB边上的高是_________.

  2.如图7.1.2-2,△ABC的三条高AD、BE、CF相交于点H,则△ABH的三条高是_______,这三条高交于________.BD是△________、△________、△________的高.

  3.如图7.1.2-3,在△ABC中EF∥AC,BD⊥AC于D,交EF于G,则下面说话中错误的是( )

  A.BD是△ABC的高 BD是△BCD的高 C.EG是△ABD的高 D.BG是△BEF的高

  7.1.2《三角形的高、中线、角平分线》说课稿

  图7.1.2-1 图7.1.2-2 图7.1.2-3

  4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )

  A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定

  5.三角形的三条高的交点一定在( )

  A.三角形内部 B.三角形的外部 C.三角形的内部或外部 D.以上答案都不对

  考点2:三角形的中线与角平分线

  6.如图7.1.2-5所示:(1)AD⊥BC,垂足为D,则AD是________的高,∠________=∠________=90°.

  (2)AE平分∠BAC,交BC于E点,则AE叫做△ABC的________,∠________=∠________=7.1.2《三角形的高、中线、角平分线》说课稿∠________.

  (3)若AF=FC,则△ABC的中线是________,S△ABF=________.

  (4)若BG=GH=HF,则AG是________的中线,AH是________的中线.

  图7.1.2-5 图7.1.2-6 图7.1.2-7

  7.如图7.1.2-6,DE∥BC,CD是∠ACB的平分线,∠ACB=60°,那么∠EDC=______度.

  8.如图7.1.2-7,BD=DC,∠ABN=7.1.2《三角形的高、中线、角平分线》说课稿∠ABC,则AD是△ABC的________线,BN是△ABC的________,

  ND是△BNC的________线.

  9.下列判断中,正确的个数为( )

  (1)D是△ABC中BC边上的一个点,且BD=CD,则AD是△ABC的中线

  (2)D是△ABC中BC边上的一个点,且∠ADC=90°,则AD是△ABC的高

  (3)D是△ABC中BC边上的一个点,且∠BAD=7.1.2《三角形的高、中线、角平分线》说课稿∠BAC,则AD是△ABC的角平分线

  (4)三角形的中线、高、角平分线都是线段

  A.1 B.2 C.3 D.4

  3、探究活动1:探究三角形的高,师提出问题,生独立解答,教师关注学生对高和边的对应关系是否明确,并结合图形引出三角形高的定义,并且利用图形,让生用语言描述,师加以修正,目的发展学生的观察力与语言表述能力。在此基础上让学生明确三角形的高是一条线段。为了培养学生的绘图能力,让小组之间合作完成锐角三角形、直角三角形、钝角三角形各边上的高。小组交流,归纳三角形高的特点,再让他们叙述小组所探究的结论,师加以适当修正与鼓励。

  在活动中,师应重点关注:

  ①学生能否多方位的加以探究

  ②学生能否用流利的语言描述自己的发现

  ③学生能否对不同的观点进行质疑,感受数学结论的正确性。之后设计的是巩固性练习,通过学生练习,对三角形高的的有关知识加以巩固,让学生从运用所学知识解决问题的过程,获得成功的体验,从而激发他们学习的积极性。

  3、探究活动2 : 探究三角形的中线:学生在画一画中体会三角形中线的定义,培养学生动脑、动手能力,语言表达能力。

  4、探究活动3:探究三角形的角平分线。首先让学生折一折,在动手操作中体会折痕是否平分三角形的内角,之后分小组折叠锐角三角形、直角三角形、钝角三角形的角平分线,小组交流,归纳三角形角平分线的特点,再让他们叙述小组所探究的结论,师加以适当修正与鼓励。从而很好的培养了学生的动手操作和探究能力。

  5、练习巩固,深化拓展

  先以抢答形式解决问题1、问题2,让学生利用所学知识,进一步巩固三角形的高、中线、角平分线的有关概念,提高学生独立解决问题的能力。拓展练习是一个综合性题目,一方面引导学生从复杂图形中抽取基本图形,从而加强学生对概念的掌握,进一步发展学生的思维,拓展能力,运用以增强直观性。

  6、感悟与收获:进一步提升学生对知识点理解。

  7、作业布置:让学生运用数学知识解决生活实例,是让学生感受数学和生活的联系及数学在生活中的重要性,充分体现数学于生活又还原于生活。

高中数学说课稿 篇3

  一.说教材

  1.1 教材结构与内容简析

  本节课为《江苏省中等职业学校试用教材数学(第二册)》5.6函数图象的定位作图法的第一课时,主要内容为基本函数 与一般函数 间的图象平移变换规律。

  函数图象的平移,既是前阶段函数性质及具体函数研究的延续和深化,也是后阶段定位作图法以至解析几何中移轴化简的基础和渗透,在教材中起着重要的承上启下作用。更为重要的是,这段内容还蕴涵着重要的数学思想方法,如化归思想、映射与对应思想、换元方法等。

  1.2 教学目标

  1.2.1知识目标

  ⑴、给定平移前后函数解析式,能熟练叙述相应的平移变换,正确掌握平移方向与 、 符号的关系。

  ⑵、能较熟练地化简较复杂的函数解析式,找出对应的基本函数模型(如一次函数,反比例函数、指数函数等)。

  ⑶、初步学会应用平移变换规律研究较复杂的函数的具体性质(如值域、单调性等)。

  1.2.2能力目标

  ⑴、在数学实验平台上,能自主探究,改变相应参数和函数解析式,观察相应图象变化,经历命题探索发现的过程,提高观察、归纳、概括能力。

  ⑵、结合学习中发现的问题,学会借助于数学软件等工具研究、探索和解决问题,学会数学

  地解决问题。

  ⑶、渗透数学思想与方法(如化归、映射的思想,换元的方法)的学习,发展学生的非逻辑思维能力(合情推理、直觉等)。

  1.2.3情感目标

  培养学生积极参与、合作交流的主体意识,在知识的探索和发现的过程中,使学生感受数学学习的意义,改善学生的数学学习信念(态度、兴趣等)。

  1.3 教材重点和难点处理思路

  重点:函数图象的平移变换规律及应用

  难点:经历数学实验方法探索平移对函数解析式的影响及如何利用平移变换规律化简函数解析式、研究复杂函数

  教材在这段内容的处理上,注重直观性背景,注重学生丰富感性知识的获得,淡化形式化的逻辑推导和形式化的结果即平移公式。实际教学中,我们发现如果学生不经受足够的亲身体验而简单的记住结论的话,往往很难在形式化的解析式与具体的图象平移之间建立联系,并且移轴与移图象之间也容易搞混,说明这段内容不能采取简单的.“告诉”方式,须让学生自主发现命题、发现规律,让他们“知其然,更要知其所以然。”

  为了突出重点、突破难点,在教学中采取了以下策略:

  ⑴、从学生已有知识出发,精心设计一些适合学生学力的数学实验平台,分层次逐步引导学生观察图象的平移方向与函数解析式中 、 符号的关系,抽象、归纳出平移变换规律。 ⑵、创设情境,引发学生认知冲突,激发学生求知欲,能借助于数学软件多角度积极探求错误原因,使学生认识到形如 的函数须提取 前的系数化为 的形式,从而真正认识解析式形式化的特点。

  ⑶、数学实验采取小组合作研究共同完成简单实验报告的形式,通过学生的自主探究、合作交流,从而实现对平移变换规律知识的建构。

  二.说教法

  针对职高一年级学生的认知特点和心理特征,在遵循启发式教学原则的基础上,本节课我主要采取以实验发现法为主,以讨论法、练习法为辅的教学方法,引导学生通过实验手段,从直观、想象到发现、猜想,亲历数学知识建构过程,体验数学发现的喜悦。

  本节课的设计一方面重视学生数学学习过程是活动的过程,因此不是按照已形式化了的现成的数学规则去操作数学,而是采取数学实验的方式,使学生有机会经受足够的亲身体验,亲历知识的自主建构过程;使学生学会从具体情境中提取适当的概念,从观察到的实例中进行概括,进行合理的数学猜想与数学验证,并作更高层次的数学概括与抽象;从而学会数学地思考。

  另一方面,注重创设机会使学生有机会看到数学的全貌,体会数学的全过程。整堂课的设计围绕研究较复杂函数的性质展开,以问题“函数 的性质如何”为主线,既让学生清楚研究函数图象平移的必要性,明确学习目标,又让学生初步学会如何应用规律解决问题,体会知识的价值,增强求知欲。

  总之,本节课采用数学实验发现教学,学生采取小组合作的形式自主探究;利用实物投影进行集体交流,及时反馈相关信息。

  三.说学法

  “学之道在于悟,教之道在于度。”学生是学习的主体,教师在教学过程中须将学习的主动权交给学生。

  美国某大学有一句名言:“让我听见的,我会忘记;让我看见的,我就领会了;让我做过的,我就理解了。”通过学生的自主实验,在探索新知的经历和获得新知的体验的基础之上,真正正确掌握平移方向。

  教师的“教”不仅要让学生“学会知识”,更主要的是要让学生“会学知识”。正如荷兰数学教育家弗赖登塔尔所指出,“数学知识既不是教出来的,也不是学出来的,而是研究出来的。”本节课的教学中创设利于学生发现数学的实验情境,让学生自主地“做数学”,将传统意义下的“学习”数学改变为“研究”数学。从而,使传授知识与培养能力融为一体,在转变学习方式的同时学会数学地思考。

  四.说程序

  4.1创设情境,引入课题

  在简要回顾前面研究的具体函数(指数函数、幂函数、三角函数等)性质后,提出问题“如何研究 的性质?”

  引导学生讨论后,总结出两种思路,即:思路1、通过描点法作出函数的图象,借助于图象研究相关性质;思路2、将 的性质问题化归为 的问题,借助于基本函数 的性质解决新问题。

  从而自然地引出课题,关键是找出 与 的关系,尤其是图象间的联系。更一般地,就是基本函数 与 间的联系。

  4.2数学实验,自主探索

  这一环节主要分两阶段。

  1、尝试初探

  引例、函数 与 图象间的关系

  这一阶段主要由教师讲解,学生观察发现,意在突出两函数图象形状相同、位置不同,后者可以由前者平移得到。

  讲解时,利用几何画板的度量功能,给出两个对应点的坐标,易于学生发现点的坐标关系,并给出相应的辅助线,一方面便于学生发现规律,另一方面也是为后面定位作图法的学习作好铺垫。

  2、实验发现

  本阶段由学生以小组合作探索的形式完成,通过填写实验报告的形式完成探索规律的任务。 实验1、试改变实验平台1中的参数 、 ,观察由 的图象到 的变换现象,依照给出的样例填写下表,并总结其中的平移变换规律。

  函数 解析式平移变换规律12向左平移2个单位,向上平移1个单位 实验结论

高中数学说课稿 篇4

  一、教材分析

  (一)地位与作用

  《幂函数》选自高一数学新教材必修1第2章第3节。是基本初等函数之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。从教材的整体安排看,学习了解幂函数是为了让学生进一步获得比较系统的函数知识和研究函数的方法,为今后学习三角函数等其他函数打下良好的基础.在初中曾经研究过y=x,y=x2,y=x—1三种幂函数。这节内容,是对初中有关内容的进一步的概括、归纳与发展,是与幂有关知识的高度升华.本节内容之后, 将把指数函数,对数函数,幂函数科学的组织起来,体现充满在整个数学中的组织化,系统化的精神。让学生了解系统研究一类函数的方法.这节课要特别让学生去体会研究的方法,以便能将该方法迁移到对其他函数的研究.

  (二)学情分析

  (1)学生已经接触的函数,确立利用函数的定义域、值域、奇偶性、单调性研究一个函数的意识 ,已初步形成对数学问题的合作探究能力。

  (2)虽然前面学生已经学会用描点画图的方法来绘制指数函数,对数函数图像,但是对于幂函数的图像画法仍然缺乏感性认识。

  (3)学生层次参差不齐,个体差异比较明显。

  二、目标分析

  新课标指出“三维目标”是一个密切联系的有机整体。

  (一)教学目标

  (1)知识与技能

  ①使学生理解幂函数的概念,会画幂函数的图象。

  ②让学生结合这几个幂函数的图象,理解幂函图象的变化情况和性质。

  (2)过程与方法

  ①让学生通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。

  ②使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。

  (3)情感态度与价值观

  ①通过熟悉的例子让学生消除对幂函数的陌生感从而引出概念,引起学生注意,激发学生的学习兴趣。

  ②利用多媒体,了解幂函数图象的变化规律,使学生认识到现代技术在数学认知过程中的作用,从而激发学生的学习欲望。

  ③培养学生从特殊归纳出一般的意识,培养学生利用图像研究函数奇偶性的能力。并引导学生发现数学中的对称美,让学生在画图与识图中获得学习的快乐。

  (二)重点难点

  根据我对本节课的内容的理解,我将重难点定为:

  重点:从五个具体的幂函数中认识概念和性质

  难点:从幂函数的图象中概括其性质。

  三、教法、学法分析

  (一)教法

  教学过程是教师和学生共同参与的过程,教师要善于启发学生自主性学习,充分调动学生的积极性、主动性,要有效地渗透数学思想方法,努力去提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法。

  1、引导发现比较法

  因为有五个幂函数,所以可先通过学生动手画出函数的图象,观察它们的解析式和图象并从式的角度和形的角度发现异同,并进行比较,从而更深刻地领会幂函数概念以及五个幂函数的图象与性质。

  2、借助信息技术辅助教学

  由于多媒体信息技术能具有形象生动易吸引学生注意的特点,故此,可用多媒体制作引入情境,将学生引到这节课的学习中来。再利用《几何画板》画出五个幂函数的图象,为学生创设丰富的数形结合环境,帮助学生更深刻地理解幂函数概念以及在幂函数中指数的变化对函数图象形状和单调性的影响,并由此归纳幂函数的性质。

  3、练习巩固讨论学习法

  这样更能突出重点,解决难点,使学生既能够进行深入地独立思考又能与同学进行广泛的交流与合作,这样一来学生对这五个幂函数领会得会更加深刻,在这个过程中学生们分析问题和解决问题的能力得到进一步的提高,班级整体学习氛氛围也变得更加浓厚。

  (二)学法

  本节课主要是通过对幂函数模型的特征进行归纳,动手探索幂函数的图像,观察发现其有关性质,再改变观察角度发现奇偶函数的特征。重在动手操作、观察发现和归纳的过程。

  由于幂函数在第一象限的特征是学生不容易发现的问题,因此在教学过程中引导学生将抽象问题具体化,借助多媒体进行动态演化,以形成较完整的知识结构。

  四、教学过程分析

  (一)教学过程设计

  (1)创设情境,提出问题。 新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生最大的思考空间,充分体现学生主体地位。

  问题1:下列问题中的函数各有什么共同特征?是否为指数函数?

  由学生讨论,总结,即可得出:p=w,s=a2,v=a,a=s1/2,v=t—1

  这时学生观察可能有些困难,老师提示可以用x表示自变量,用y表示函数值,上述函数式变成:

  都是自变量的若干次幂的形式。都是形如

  的函数。

  揭示课题:今天这节课,我们就来研究:幂函数

  (一)课堂主要内容

  (1)幂函数的概念

  ①幂函数的定义。

  一般地,函数

  叫做幂函数,其中x 是自变量,a是常数。

  ②幂函数与指数函数之间的区别。

  幂函数——底数是自变量,指数是常数;

  指数函数——指数是自变量,底数是常数。

  (2)几个常见幂函数的图象和性质

  由同学们画出下列常见的幂函数的图象,并根据图象将发现的性质填入表格

  根据上表的内容并结合图象,总结函数的共同性质。让学生交流,老师结合学生的回答组织学生总结出性质。

  以上问题的设计意图:数形结合是一个重要的数学思想方法,它包含以数助形,和以形助数的思想。通过问题设计让学生着手实际,借助行的生动来阐明幂函数的性质。

  教师讲评:幂函数的性质.

  ①所有的幂函数在(0,+∞)上都有定义,并且图像都过点(1,1).

  ②如果a>0,则幂函数的`图像通过原点,并在区间〔0,+∞)上是增函数.

  ③如果a<0,则幂函数在(0,+∞)上是减函数,在第一象限内,当x从右边趋向于原点时,图像在y轴右方无限地趋近y轴;当x趋向于+∞时,图像在x轴上方无限地趋近x轴.

  ④当a为奇数时,幂函数为奇函数;当a为偶数时,幂函数为偶函数。

  以问题设计为主,通过问题,让学生由已经学过的指数函数,对数函数,描点作图得到五个幂函数的图像,但是我们应该知道绘制幂函数的图像比绘制指数函数和对数函数的图像更为复杂,因为幂函数随着幂指数的轻微变化会出现较大的变化,因此,在描点作图之前,应引导学生对几个特殊的幂函数的性质先进行初步的探究,如分析函数的定义域,奇偶性等,在根据研究结果和描点作图画出图像,让学生观察所作图像特征,并由图象特征得到相应的函数性质,让学生充分体会系统的研究方法。同时学生对于归纳性质这一环节相对指数函数,对数函数的性质,学生会有更大的困难。因此,教学中只须对他们的图像与基本性质进行认识,而不必在一般幂函数上作过多的引申和介绍。在教学中,采用从具体到一般,再从一般到具体的安排。

  通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。

  (3)当堂训练,巩固深化

  例题和练习题的选取应结合学生认知探究,巩固本节课的重点知识,并能用知识加以运用。本节课选取主要选取了两道例题。

  例1是课本上的例题:证明f(x)=x1/2在(0,+∞)上是增函数。这题先从“形”的角度判断函数的单调区间和单调性,再用到定义从“数”的角度对函数的单调性进行推理论证,培养学生的数形结合的数学思想和解决问题的专业素养。

  例2是补充例题,主要培养学生根据体例构造出函数,并利用函数的性质来解决问题的能力,从而加深学生对幂函数及其性质的理解。注意:由于学生对幂函数还不是很熟悉,所以在讲评中要刻意体现出幂函数y=x1。3是增函数与y=x—5/4的图像的画法,即再一次让学生体会根据解析式来画图像解题这一基本思路

  (4)小结归纳,回顾反思。 小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:

  (1)通过本节课的学习,你学到了哪些知识?

  (2)通过本节课的学习,你最大的体验是什么?

  (3)通过本节课的学习,你掌握了哪些技能?

  (二)作业设计 作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成. 我设计了以下作业:

  (1)必做题

  (2)选做题

  (三)板书设计

  板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。

  五、评价分析

  学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。我采用及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对幂函数是否有一个完整的集训,并进行及时的调整和补充。 以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。

  谢谢!

高中数学说课稿 篇5

  本节课讲述的是人教版高一数学(上)3.2等差数列(第一课时)的内容。

  一、教材分析

  1、教材的地位和作用:

  数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

  2、教学目标

  根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标

  a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。

  b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

  c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

  3、教学重点和难点

  根据教学大纲的要求我确定本节课的教学重点为:

  ①等差数列的概念。

  ②等差数列的通项公式的推导过程及应用。

  由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的`同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。

  二、学情教法分析:

  对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合

  这类学生的心理发展特点,从而促进思维能力的进一步发展。

  针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

  三、学法指导:

  在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

  四、教学程序

  本节课的教学过程由(一)复习引入(二)新课探究(三)应用举例(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。

  (一)复习引入:

  1.从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的______。(N﹡;解析式)

  通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。

  2.小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为:100,98,96,94,92 ①

  3. 小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为5,10,15,20,25 ②

  通过练习2和3引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。

  (二) 新课探究

  1、由引入自然的给出等差数列的概念:

  如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,

  这个常数叫做等差数列的公差,通常用字母d来表示。强调:

  ① “从第二项起”满足条件;

  ②公差d一定是由后项减前项所得;

  ③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );

  在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:

  an+1-an=d (n≥1)同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。

  1. 9 ,8,7,6,5,4,??;√ d=-1

  2. 0.70,0.71,0.72,0.73,0.74??;√ d=0.01

  3. 0,0,0,0,0,0,??.; √ d=0

  4. 1,2,3,2,3,4,??;×

  5. 1,0,1,0,1,??×

  其中第一个数列公差<0,>0,第三个数列公差=0

  由此强调:公差可以是正数、负数,也可以是0

  2、第二个重点部分为等差数列的通项公式

  在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项,公差d,由学生研究分组讨论a4的通项公式。通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。

  若一等差数列{an }的首项是a1,公差是d,则据其定义可得:

  a2 - a1 =d 即: a2 =a1 +d

  a3 – a2 =d 即: a3 =a2 +d = a1 +2d

  a4 – a3 =d 即: a4 =a3 +d = a1 +3d

  ??

  猜想: a40 = a1 +39d,进而归纳出等差数列的通项公式:

  an=a1+(n-1)d

  此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:

  a2 – a1 =d

  a3 – a2 =d

  a4 – a3 =d

  ??

  an – an-1=d

  将这(n-1)个等式左右两边分别相加,就可以得到 an– a1= (n-1) d即 an= a1+(n-1) d

  (1)

  当n=1时,(1)也成立,

  所以对一切n∈N﹡,上面的公式都成立

  因此它就是等差数列{an}的通项公式。

  在迭加法的证明过程中,我采用启发式教学方法。

  利用等差数列概念启发学生写出n-1个等式。

  对照已归纳出的通项公式启发学生想出将n-1个等式相加。证出通项公式。

  在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想” 的教学要求

  接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n-1)×2 ,

  即an=2n-1 以此来巩固等差数列通项公式运用

  同时要求画出该数列图象,由此说明等差数列是关于正整数n一次函数,其图像是均匀排开的无穷多个孤立点。用函数的思想来研究数列,使数列的性质显现得更加清楚。

  (三)应用举例

  这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另

  一部分量。

  例1 (1)求等差数列8,5,2,?的第20项;第30项;第40项

  (2)-401是不是等差数列-5,-9,-13,?的项?如果是,是第几项?

  在第一问中我添加了计算第30项和第40项以加强巩固等差数列通项公式;第二问实际上是求正整数解的问题,而关键是求出数列的通项公式an.

  例2 在等差数列{an}中,已知a5=10,a12 =31,求首项a1与公差d。

  在前面例1的基础上将例2当作练习作为对通项公式的巩固

  例3 是一个实际建模问题

  建造房屋时要设计楼梯,已知某大楼第2层的楼底离地面的高度为3米,第三层离地面5.8米,若楼梯设计为等高的16级台阶,问每级台阶高为多少米?

  这道题我采用启发式和讨论式相结合的教学方法。启发学生注意每级台阶“等高”使学生想到每级台阶离地面的高度构成等差数列,引导学生将该实际问题转化为数学模型------等差数列:(学生讨论分析,分别演板,教师评析问题。问题可能出现在:项数学生认为是16项,应明确a1为第2层的楼底离地面的高度,a2表示第一级台阶离地面的高度而第16级台阶离地面高度为a17,可用课件展示实际楼梯图以化解难点)。

  设置此题的目的:1.加强同学们对应用题的综合分析能力,2.通过数学实际问题引出等差数列问题,激发了学生的兴趣;3.再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法

  (四)反馈练习

  1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。

  2、书上例3)梯子的最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。

  目的:对学生加强建模思想训练。

  3、若数例{an} 是等差数列,若 bn = k an ,(k为常数)试证明:数列{bn}是等差数列

  此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。

  (五)归纳小结(由学生总结这节课的收获)

  1.等差数列的概念及数学表达式.

  强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数

  2.等差数列的通项公式 an= a1+(n-1) d会知三求一

  3.用“数学建模”思想方法解决实际问题

  (六)布置作业

  必做题:课本P114 习题3.2第2,6 题

  选做题:已知等差数列{an}的首项a1=-24,从第10项开始为正数,求公差d的取值范围。

  (目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)

  五、板书设计

  在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。

高中数学说课稿 篇6

尊敬的各位专家、评委:

  下午好!

  我的抽签序号是___,今天我说课的课题是《______》第__课时。 我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、教法学法分析、教学过程分析和评价分析四方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。

  一、教材分析

  (一)地位与作用

  数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面数列作为一种特殊的函数与函数思想密不可分;另一方面学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

  (二)学情分析

  (1)学生已熟练掌握_________________。

  (2)学生的知识经验较丰富,具备了教强的抽象思维能力和演绎推理能力。

  (3)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。

  (4) 学生层次参次不齐,个体差异比较明显。

  二、目标分析

  新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体现在教学过程中,新课标指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据__在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标:

  (一)教学目标

  (1)知识与技能

  使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;。

  (2)过程与方法

  引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。

  (3)情感态度与价值观

  在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

  (二)重点难点

  本节课的教学重点是________,教学难点是_________。

  三、教法、学法分析

  (一)教法

  基于本节课的内容特点和高二学生的年龄特征,按照临沂市高中数学“三五四”课堂教学策略,采用探究――体验教学法为主来完成教学,为了实现本节课的教学目标,在教法上我采取了:

  1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.

  2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.

  3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.

  (二)学法在学法上我重视了: 1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。 2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。

  四、教学过程分析

  (一)教学过程设计

  教学是一个教师的“导”,学生的“学”以及教学过程中的“悟”构成的和谐整体。教师的“导”也就是教师启发、诱导、激励、评价等为学生的学习搭建支架,把学习的任务转移给学生,学生就是接受任务,探究问题、完成任务。如果在教学过程中把“教与学”完美的结合也就是以“问题”为核心,通过对知识的发生、发展和运用过程的演绎、解释和探究来组织和推动教学。

  (1)创设情境,提出问题。 新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的

  设计改变了传统目的明确的设计方式,给学生最大的思考空间,充分体现学生主体地位。

  (2)引导探究,建构概念。 数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程.

  (3)自我尝试,初步应用。 有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此。让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.

  (4)当堂训练,巩固深化。 通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的`再次深化。

  (5)小结归纳,回顾反思。 小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:(1)通过本节课的学习,你学到了哪些知识?(2)通过本节课的学习,你最大的体验是什么?(3)通过本节课的学习,你掌握了哪些技能?

  (二)作业设计

  作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.

  我设计了以下作业: (1)必做题 (2)选做题

  (三)板书设计 板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。

  五、评价分析

  学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。我采用及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对____是否有一个完整的集训,并进行及时的调整和补充。 以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。 谢谢!

【高中数学说课稿】相关文章:

高中数学说课稿09-30

高中数学数列说课稿07-16

高中数学说课稿11-23

高中数学说课稿范文09-10

高中数学说课稿范文06-17

高中数学说课稿九篇04-26

精选高中数学说课稿10篇05-11

高中数学说课稿5篇05-30

高中数学说课稿4篇09-12

精选高中数学说课稿四篇12-06