反比例函数教学设计

时间:2024-09-03 07:30:51 教学设计 我要投稿
  • 相关推荐

反比例函数教学设计

  作为一名老师,编写教学设计是必不可少的,借助教学设计可以提高教学质量,收到预期的教学效果。那么什么样的教学设计才是好的呢?以下是小编收集整理的反比例函数教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

反比例函数教学设计

反比例函数教学设计1

  [教学目标]

  1.回顾反比例函数的概念.通过实际问题,进一步感受用反比例函数解决实际问题的过程与方法,体会反比例函数是分析、解决实际问题的一种有效的模型.

  2.归纳总结反比例函数的图象和性质,进一步体会形数结合的数学思想方法.

  [教学过程]

  1.回顾、梳理本章的知识:

  如同已经学过的有关方程、函数的.内容一样,本章内容分为3块:

  (1)从生活到数学:从问题到反比例函数,即建构实际问题的数学模型;

  (2)数学研究:反比例函数的图象与性质;

  (3)用数学解决问题:反比例函数的应用.

  2.可以设计一组问题,重点归纳、整理反比例函数的图象与性质,进一步感受形数结合的数学思想方法.例如:

  (1)由形到数——用待定系数法求反比例函数的关系式;由图象的位置或图象的部分确定函数的特征;

  (2)由数到形――根据反比例函数关系式或反比例函数的性质,确定图形的位置、趋势等;

  (3)形数结合——函数的图象与性质的综合应用

  例如:如图,点P是反比例函数y?上的一点,PD垂直x轴于点D,则△xPOD的面积为________

  3.设计一个实际问题,让学生经历“问题情境一建立模型一求解一解释与应用”的基本过程.

  例如:为了预防“非典”,某学校对教室采用药薰法进行消毒.已知药物燃烧时.室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例(如图).现测得药物8min燃毕,此时室内空气中每立方米含药量为6mg。

  (1)写出药物燃烧前、后y与x的函数关系式;

  (2)研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室.那么从消毒开始,至少需要多少时间,学生方能进入教室?

  (3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不少于10min时,才能有效灭杀空气中的病菌,那么这次消毒是否有效?

反比例函数教学设计2

  教学目标

  1、知识与能力目标:

  (1)复习反比例函数概念、图象与性质的知识点,通过相应知识点的配套练习加深学生对反比例函数本章知识的理解与掌握。

  (2)能够根据问题中的条件确定反比例函数的解析式,会画出它的图象,并根据问题确定自变量的取值范围及增减性。

  2、过程与方法目标:通过对相关问题的变式探究,正确运用反比例函数知识,进一步体验形成解决问题的一些基本策略,发展实践能力和创新精神。

  3、情感态度与价值观目标:创设教学情景,鼓励学生主动参与反比例函数复习活动,激发学习兴趣,获得问题解决后的乐趣,继续渗透数形结合等数学思想方法。

  教学重点和难点

  重点:进一步掌握反比例函数的概念、图像、性质并正确运用。

  难点:反比例函数性质的灵活运用。数形结合思想的应用。

  教学方法

  探究——讨论——交流——总结

  教学媒体

  多媒体课件。

  教学过程

  一、知识梳理

  同学们,今天我们就来复习反比例函数,通过今天的复习课,希望大家加深对反比例函数知识的理解和运用首先请同学们回忆一下,对反比例函数你了解那知识?

  课件展示:

  1、反比例函数的意义

  2、反比例函数的图象与性质

  3、利用反比例函数解决实际问题

  二、合作交流、解读探究

  (一)与反比例函数的意义有关的问题

  课件展示:

  忆一忆:什么是反比例函数?

  要求学生说出反比例函数的意义及其等价形式

  巩固练习:课件展示:

  1、下列函数中,哪些是反比例函数?

  (1)y= 5/x(2)y=x/4+2 (3)y= -5/3x(4)y=-7 x的-1次方(5)y=1/x+4

  2、写出下列问题中的函数关系式,并指出它们是什么函数?

  ⑴当路程s一定时,时间t与平均速度v之间的关系。

  ⑵质量为m(kg)的气体,其体积v(m3)与密度ρ(kg/m3)之间的关系。

  3、若y=为反比例函数,则m=______

  4、若y=(m-1)为反比例函数,则m=______ 。

  (二)运用反比例函数的图象与性质解决问题

  1、反比例函数的图象是

  2、图象性质见下表(课件展示):

  3、做一做(课件展示)

  (1)函数y=的图象在第______象限,当x

  (2)双曲线y=经过点(-3,______)。

  (3)函数y=的图象在二、四象限内,m的取值范围是______ 。

  (4)若双曲线经过点(-3,2),则其解析式是______.

  (5)已知点A(-2,y1),B(-1,y2) c(4,y3)都在反比例函数y=的图象上,则y1、y2与y3的`大小关系(从大到小)为____________ 。

  (三)综合运用(课件展示)

  一次函数的图像y=ax+b与反比例函数y=交与m(2,m)、n(-1,-4)两点。(1)求反比例函数和一次函数的解析式;(2)根据图像写出反比例函数的值大于一次函数的值的X的取值范围

  三、随堂练习

  见课件

  四、小结

  1、反比例函数的意义

  2、反比例函数的图象与性质

  五、作业

  配套练习22页21、22题

【反比例函数教学设计】相关文章:

幂函数教学反思06-20

反比例意义教学反思02-21

对数函数教学反思04-06

二次函数教学反思04-17

函数概念教案07-25

六年级反比例教学反思11-21

教学设计10-21

文章赏析课教学设计-教学设计07-06

卖炭翁教学设计05-07

《山雨》教学设计07-19