初中数学公式

时间:2025-03-04 02:08:32 初中数学 我要投稿

人教版初中数学公式大全范例[15篇]

人教版初中数学公式大全1

  把一元二次方程化成ax2+bx+c的一般形式,然后把各项系数a, b, c的值代入求根公式就可得到方程的`根。

人教版初中数学公式大全范例[15篇]

  公式法

  公式:x=[-b±√(b2-4ac)]/2a

  当Δ=b2-4ac>0时,求根公式为x1=[-b+√(b2-4ac)]/2a,x2=[-b-√(b24ac)]/2a(两个不相等的实数根)

  当Δ=b2-4ac=0时,求根公式为x1=x2=-b/2a(两个相等的实数根)

  当Δ=b2-4ac<0时,求根公式为x1=[-b+√(4ac-b2)i]/2a,x2=[-b-√(4ac-b2)i]/2a

  例3.用公式法解方程 2x2-8x=-5

  解:将方程化为一般形式:2x2-8x+5=0

  ∴a=2, b=-8,c=5

  b2-4ac=(-8)2-4×2×5=64-40=24>0

  ∴x= (4±√6)/2

  ∴原方程的解为x?=(4+√6)/2,x?=(4-√6)/2.

  大家不知道的是两个复数根在初中数学的学习中理解为无实数根。

人教版初中数学公式大全2

  一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。

  恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n

  平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

  完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。

  因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。

  “代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)

  有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。【注】“大”减“小”是指绝对值的大小。

  合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。

  去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。

  单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。

  一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。

  一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找 初一。

  一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。

  分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。

  分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊。

  最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。

  特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。

  象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。

  平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不同;直线平行于Y轴,点的横坐标仍照旧。

  对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反,Y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。

  自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。

  函数图像的移动规律:若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减。图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。

  巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是三角形边的比值,可以把两个字用/隔开,再用下面的一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:正对鱼磷(余邻)直刀切。正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边。

  三角函数的增减性:正增余减

  特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可。

  平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行。对角线,是个宝,互相平分“跑不了”,对角相等也有用,“两组对角”才能成。

  梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线。

  添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形边两中点,连接则成中位线;三角形中有中线,延长中线翻一番。

  圆的证明歌:圆的'证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连。同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦。

  圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系。

  正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前.

  经过分点做切线,切线相交n个点.n个交点做顶点,外切正n边形便出现.正n边形很美观,它有内接,外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果n值为偶数,中心对称很方便.正n边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n个整,依此计算便简单.

  函数学习口决:正比例函数是直线,图象一定过圆点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键。

  反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线x、y的顺序可交换。

  二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,a、b同号轴左边抛物线平移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。

人教版初中数学公式大全3

  1、同旁内角互补,两直线平行

  2、两直线平行,同位角相等

  3、两直线平行,内错角相等

  4、两直线平行,同旁内角互补

  5、定理三角形两边的和大于第三边

  6、推论三角形两边的差小于第三边

  7、三角形内角和定理三角形三个内角的和等于180°

  8、推论1直角三角形的两个锐角互余

  9、推论2三角形的一个外角等于和它不相邻的两个内角的和

  10、推论3三角形的一个外角大于任何一个和它不相邻的内角

  11、全等三角形的对应边、对应角相等

  12、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

  13、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

  14、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

  15、边边边公理(SSS)有三边对应相等的两个三角形全等

  16、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

  17、定理1在角的平分线上的点到这个角的两边的距离相等

  18、定理2到一个角的两边的距离相同的点,在这个角的平分线上

  19、角的平分线是到角的两边距离相等的所有点的集合

  20、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

  21、推论1等腰三角形顶角的平分线平分底边并且垂直于底边

  22、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

  23、推论3等边三角形的各角都相等,并且每一个角都等于60°

  24、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

  25、推论1三个角都相等的三角形是等边三角形

  26、推论2有一个角等于60°的等腰三角形是等边三角形

  27、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

  28、直角三角形斜边上的中线等于斜边上的一半

  29、定理线段垂直平分线上的点和这条线段两个端点的距离相等

  30、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

  31、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

  32、定理1关于某条直线对称的两个图形是全等形

  33、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

  34、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

  35、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

  36、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

  37、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形

  38、定理四边形的内角和等于360°

  39、四边形的外角和等于360°

  40、多边形内角和定理n边形的内角的和等于(n-2)×180°

  41、推论任意多边的外角和等于360°

  42、平行四边形性质定理1平行四边形的对角相等

  43、平行四边形性质定理2平行四边形的对边相等

  44、推论夹在两条平行线间的平行线段相等

  45、平行四边形性质定理3平行四边形的对角线互相平分

  46、平行四边形判定定理1两组对角分别相等的四边形是平行四边形

  47、平行四边形判定定理2两组对边分别相等的四边形是平行四边形

  48、平行四边形判定定理3对角线互相平分的四边形是平行四边形

  49、平行四边形判定定理4一组对边平行相等的四边形是平行四边形

  50、圆是定点的距离等于定长的点的集合

  51、圆的内部可以看作是圆心的距离小于半径的点的集合

  52、圆的外部可以看作是圆心的距离大于半径的'点的集合

  53、同圆或等圆的半径相等

  54、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  55、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

  56、到已知角的两边距离相等的点的轨迹,是这个角的平分线

  57、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

  58、定理不在同一直线上的三点确定一个圆。

  59、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  60推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  61、推论2圆的两条平行弦所夹的弧相等

  62、3圆是以圆心为对称中心的中心对称图形

  63、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

  64、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

  65、定理一条弧所对的圆周角等于它所对的圆心角的一半

  66、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

  67、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

  68、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

  69、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

  70、①直线L和⊙O相交d

  ②直线L和⊙O相切d=r

  ③直线L和⊙O相离d>r

  71、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

  72、切线的性质定理圆的切线垂直于经过切点的半径

  73、推论1经过圆心且垂直于切线的直线必经过切点

  74、推论2经过切点且垂直于切线的直线必经过圆心

  75、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

  76、圆的外切四边形的两组对边的和相等

  77、弦切角定理弦切角等于它所夹的弧对的圆周角

  78、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

  79、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等

  80、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

  81、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

  82、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

  83、如果两个圆相切,那么切点一定在连心线上

  84、定理相交两圆的连心线垂直平分两圆的公共弦

  85、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

人教版初中数学公式大全4

  三角形的面积=底×高÷2。公式S=a×h÷2正方形的面积=边长×边长公式S=a×a长方形的面积=长×宽公式S=a×b平行四边形的面积=底×高公式S=a×h梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2内角和:三角形的内角和=180度。长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:L=πd=2πr圆的面积=半径×半径×π公式:S=πr2

  圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2

  圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh圆锥的体积=1/3底面×积高。公式:V=1/3Sh

  分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

  分数的乘法则:用分子的积做分子,用分母的积做分母。分数的除法则:除以一个数等于乘以这个数的倒数。读懂理解会应用以下定义定理性质公式一、算术方面

  1、加法交换律:两数相加交换加数的位置,和不变。

  2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

  3、乘法交换律:两数相乘,交换因数的位置,积不变。

  4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

  5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5

  6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。O除以任何不是O的数都得O。

  简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

  7、么叫等式?等号左边的数值与等号右边的`数值相等的式子叫做等式。

  等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

  8、什么叫方程式?答:含有未知数的等式叫方程式。

  9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。

  学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

  11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

  12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

  13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。15、分数除以整数(0除外),等于分数乘以这个整数的倒数。16、真分数:分子比分母小的分数叫做真分数。

  17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。18、带分数:把假分数写成整数和真分数的形式,叫做带分数。19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

  20、一个数除以分数,等于这个数乘以分数的倒数。21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。数量关系计算公式方面1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和一个加数=和+另一个加数

  被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)

  6、1公里=1千米1千米=1000米

  1米=10分米1分米=10厘米1厘米=10毫米

  1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米

  1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米

  1吨=1000千克1千克=1000克=1公斤=1市斤1公顷=10000平方米。1亩=666。666平方米。1升=1立方分米=1000毫升1毫升=1立方厘米

  7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

  11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k(k一定)或kx=y

  12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y=k(k一定)或k/x=y百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

  13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。

  把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

  14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。15、要学会把小数化成分数和把分数化成小数的化发。16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)17、互质数:公约数只有1的两个数,叫做互质数。

  18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

  19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)

  20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)

  21、最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。

  个位上是0、2、4、6、8的数,都能被2整除,即能用2进行

  约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。

  28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)

  29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。

  30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。

  31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3。14141432、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如3。141592654

  33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3。141592654……34、什么叫代数?代数就是用字母代替数。

  35、什么叫代数式?用字母表示的式子叫做代数式。如:3x=(a+b)*c

  初中数学知识点归纳。

  有理数的加法运算

  同号两数来相加,绝对值加不变号。

  异号相加大减小,大数决定和符号。

  互为相反数求和,结果是零须记好。【注】“大”减“小”是指绝对值的大小。

  有理数的减法运算

  减正等于加负,减负等于加正。有理数的乘法运算符号法则

  同号得正异号负,一项为零积是零。合并同类项

  说起合并同类项,法则千万不能忘。只求系数代数和,字母指数留原样。去、添括号法则

  去括号或添括号,关键要看连接号。扩号前面是正号,去添括号不变号。括号前面是负号,去添括号都变号。解方程

  已知未知闹分离,分离要靠移完成。移加变减减变加,移乘变除除变乘。平方差公式

  两数和乘两数差,等于两数平方差。积化和差变两项,完全平方不是它。完全平方公式

  二数和或差平方,展开式它共三项。首平方与末平方,首末二倍中间放。和的平方加联结,先减后加差平方。完全平方公式

  首平方又末平方,二倍首末在中央。和的平方加再加,先减后加差平方。解一元一次方程

  先去分母再括号,移项变号要记牢。同类各项去合并,系数化“1”还没好。求得未知须检验,回代值等才算了。解一元一次方程

  先去分母再括号,移项合并同类项。系数化1还没好,准确无误不白忙。因式分解与乘法

  和差化积是乘法,乘法本身是运算。积化和差是分解,因式分解非运算。因式分解

  两式平方符号异,因式分解你别怕。两底和乘两底差,分解结果就是它。两式平方符号同,底积2倍坐中央。因式分解能与否,符号上面有文章。

  同和异差先平方,还要加上正负号。

  同正则正负就负,异则需添幂符号。因式分解

  一提二套三分组,十字相乘也上数。四种方法都不行,拆项添项去重组。重组无望试求根,换元或者算余数。多种方法灵活选,连乘结果是基础。同式相乘若出现,乘方表示要记住。【注】一提(提公因式)二套(套公式)

  因式分解

  一提二套三分组,叉乘求根也上数。五种方法都不行,拆项添项去重组。对症下药稳又准,连乘结果是基础。二次三项式的因式分解

  先想完全平方式,十字相乘是其次。两种方法行不通,求根分解去尝试。比和比例

  两数相除也叫比,两比相等叫比例。外项积等内项积,等积可化八比例。分别交换内外项,统统都要叫更比。同时交换内外项,便要称其为反比。前后项和比后项,比值不变叫合比。前后项差比后项,组成比例是分比。两项和比两项差,比值相等合分比。前项和比后项和,比值不变叫等比。解比例

  外项积等内项积,列出方程并解之。求比值

  由已知去求比值,多种途径可利用。活用比例七性质,变量替换也走红。消元也是好办法,殊途同归会变通。正比例与反比例

  商定变量成正比,积定变量成反比。正比例与反比例

  变化过程商一定,两个变量成正比。变化过程积一定,两个变量成反比。判断四数成比例

  四数是否成比例,递增递减先排序。两端积等中间积,四数一定成比例。判断四式成比例

  四式是否成比例,生或降幂先排序。两端积等中间积,四式便可成比例。比例中项

  成比例的四项中,外项相同会遇到。有时内项会相同,比例中项少不了。比例中项很重要,多种场合会碰到。成比例的四项中,外项相同有不少。有时内项会相同,比例中项出现了。同数平方等异积,比例中项无处逃。根式与无理式

  表示方根代数式,都可称其为根式。用平方差公式因式分解

  异号两个平方项,因式分解有办法。两底和乘两底差,分解结果就是它。用完全平方公式因式分解

  两平方项在两端,底积2倍在中部。同正两底和平方,全负和方相反数。分成两底差平方,方正倍积要为负。两边为负中间正,底差平方相反数。一平方又一平方,底积2倍在中路。根式异于无理式,被开方式无限制。被开方式有字母,才能称为无理式。无理式都是根式,区分它们有标志。被开方式有字母,又可称为无理式。求定义域

  求定义域有讲究,四项原则须留意。负数不能开平方,分母为零无意义。指是分数底正数,数零没有零次幂。限制条件不唯一,满足多个不等式。求定义域要过关,四项原则须注意。负数不能开平方,分母为零无意义。分数指数底正数,数零没有零次幂。限制条件不唯一,不等式组求解集。解一元一次不等式

  先去分母再括号,移项合并同类项。系数化“1”有讲究,同乘除负要变向。先去分母再括号,移项别忘要变号。同类各项去合并,系数化“1”注意了。同乘除正无防碍,同乘除负也变号。解一元一次不等式组

  大于头来小于尾,大小不一中间找。大大小小没有解,四种情况全来了。同向取两边,异向取中间。中间无元素,无解便出现。

  幼儿园小鬼当家,(同小相对取较小)敬老院以老为荣,(同大就要取较大)军营里没老没少。(大小小大就是它)大大小小解集空。(小小大大哪有哇)解一元二次不等式

  首先化成一般式,构造函数第二站。判别式值若非负,曲线横轴有交点。a正开口它向上,大于零则取两边。代数式若小于零,解集交点数之间。方程若无实数根,口上大零解为全。小于零将没有解,开口向下正相反。三正两底和平方,全负和方相反数。分成两底差平方,两端为正倍积负。两边若负中间正,底差平方相反数。用公式法解一元二次方程

  要用公式解方程,首先化成一般式。调整系数随其后,使其成为最简比。确定参数abc,计算方程判别式。判别式值与零比,有无实根便得知。有实根可套公式,没有实根要告之。用常规配方法解一元二次方程

  左未右已先分离,二系化“1”是其次。一系折半再平方,两边同加没问题。左边分解右合并,直接开方去解题。该种解法叫配方,解方程时多练习。用间接配方法解一元二次方程

  已知未知先分离,因式分解是其次。调整系数等互反,和差积套恒等式。完全平方等常数,间接配方显优势【注】恒等式解一元二次方程

  方程没有一次项,直接开方最理想。如果缺少常数项,因式分解没商量。b、c相等都为零,等根是零不要忘。b、c同时不为零,因式分解或配方,也可直接套公式,因题而异择良方。正比例函数的鉴别

  判断正比例函数,检验当分两步走。一量表示另一量,有没有。

  若有再去看取值,全体实数都需要。区分正比例函数,衡量可分两步走。一量表示另一量,是与否。

  若有还要看取值,全体实数都要有。正比例函数的图象与性质

  正比函数图直线,经过和原点。K正一三负二四,变化趋势记心间。

  K正左低右边高,同大同小向爬山。K负左高右边低,一大另小下山峦。一次函数

  一次函数图直线,经过点。

  K正左低右边高,越走越高向爬山。K负左高右边低,越来越低很明显。K称斜率b截距,截距为零变正函。反比例函数

  反比函数双曲线,经过点。

  直平之间是钝角,平周之间叫优角。

  互余两角和直角,和是平角互补角。一点出发两射线,组成图形叫做角。平角反向且共线,平角之半叫直角。平角两倍成周角,小于直角叫锐角。钝角界于直平间,平周之间叫优角。和为直角叫互余,互为补角和平角。证等积或比例线段

  等积或比例线段,多种途径可以证。K正一三负二四,两轴是它渐近线。K正左高右边低,一三象限滑下山。K负左低右边高,二四象限如爬山。二次函数

  二次方程零换y,二次函数便出现。全体实数定义域,图像叫做抛物线。抛物线有对称轴,两边单调正相反。A定开口及大小,线轴交点叫顶点。顶点非高即最低。上低下高很显眼。如果要画抛物线,平移也可去描点,提取配方定顶点,两条途径再挑选。列表描点后连线,平移规律记心间。左加右减括号内,号外上加下要减。二次方程零换y,就得到二次函数。图像叫做抛物线,定义域全体实数。A定开口及大小,开口向上是正数。绝对值大开口小,开口向下A负数。抛物线有对称轴,增减特性可看图。线轴交点叫顶点,顶点纵标最值出。如果要画抛物线,描点平移两条路。提取配方定顶点,平移描点皆成图。列表描点后连线,三点大致定全图。若要平移也不难,先画基础抛物线,顶点移到新位置,开口大小随基础。【注】基础抛物线直线、射线与线段

  直线射线与线段,形状相似有关联。直线长短不确定,可向两方无限延。射线仅有一端点,反向延长成直线。线段定长两端点,双向延伸变直线。两点定线是共性,组成图形最常见。角

  一点出发两射线,组成图形叫做角。共线反向是平角,平角之半叫直角。平角两倍成周角,小于直角叫锐角。证等积要改等比,对照图形看特征。共点共线线相交,平行截比把题证。三点定型十分像,想法来把相似证。图形明显不相似,等线段比替换证。换后结论能成立,原来命题即得证。实在不行用面积,射影角分线也成。只要学习肯登攀,手脑并用无不胜。解无理方程

  一无一有各一边,两无也要放两边。乘方根号无踪迹,方程可解无负担。两无一有相对难,两次乘方也好办。特殊情况去换元,得解验根是必然。解分式方程

  先约后乘公分母,整式方程转化出。特殊情况可换元,去掉分母是出路。求得解后要验根,原留增舍别含糊。列方程解应用题

  列方程解应用题,审设列解双检答。审题弄清已未知,设元直间两办法。列表画图造方程,解方程时守章法。检验准且合题意,问求同一才作答。添加辅助线

  学习几何体会深,成败也许一线牵。分散条件要集中,常要添加辅助线。畏惧心理不要有,其次要把观念变。熟能生巧有规律,真知灼见靠实践。图中已知有中线,倍长中线把线连。旋转构造全等形,等线段角可代换。多条中线连中点,便可得到中位线。倘若知角平分线,既可两边作垂线。也可沿线去翻折,全等图形立呈现。角分线若加垂线,等腰三角形可见。角分线加平行线,等线段角位置变。已知线段中垂线,连接两端等线段。辅助线必画虚线,便与原图联系看。

  两点间距离公式

  同轴两点求距离,大减小数就为之。与轴等距两个点,间距求法亦如此。平面任意两个点,横纵标差先求值。差方相加开平方,距离公式要牢记。矩形的判定

  任意一个四边形,三个直角成矩形;对角线等互平分,四边形它是矩形。已知平行四边形,一个直角叫矩形;两对角线若相等,理所当然为矩形。菱形的判定

  任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形。已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形。

人教版初中数学公式大全5

  1数轴

  11 有向直线

  在科学技术和日常生活中,为了区别一条直线的两个不同方向,可以规定其中一方向为正向,另一方向为负相

  规定了正方向的直线,叫做有向直线,读作有向直线l

  12 数轴

  我们把数轴上任意一点所对应的实数称为点的坐标

  对于每一个坐标(实数),在数周上可以找到唯一的点与之对应这就是直线的坐标化

  数轴上任意一条有向线段的数量等于它的终点坐标与起点坐标的差任意一条有向线段的长度等于它两个断电坐标差的绝对值

  2 平面直角坐标系

  21 平面的直角坐标化

  在平面内任取一点o为作为原点(基准点),过o引两条互相垂直的,以o为公共原点的数轴,一般地,两个数轴选取相同的单位长度这样就构成了一个平面直角坐标系x轴叫横轴,y轴叫纵轴,它们都叫直角坐标系的坐标轴;公共原点o称为直角坐标系的原点;我们把建立了直角坐标系的平面叫直角坐标平面简称坐标平面两坐标轴把坐标平面分成四个部分,它们叫做四个象限

  22 两点间的距离

  23 中点公式

  3 函数

  31 常量,变量和函数

  在某一过程中可以去不同数值的量,叫做变量在整个过程中保持统一数值的量或数,叫做常量或常数

  一般地,设在变活过程中有两个互相关联的变量x,y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与之对应,那么就称y是x的函数,x叫做自变量

  1. 函数的定义域

  2. 对应法则

  (1) 解析法

  就是用等式来表示一个变量是另一个变量的函数,这个等式叫做函数的解析表达式(函数关系式)

  (2) 列表法

  (3) 图像法

  3 函数的值域

  一般的,当函数f(x)的自变量x去定义域D中的一个确定的值a,函数有唯一确定的对应值这个对应值,称为x=a时的函数值,简称函数值,记作:f(a)

  32 函数的图像

  若把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在直角坐标平面上描出一个点(x,f(x))的集合构成一个图形F,而集F成为函数y=f(x)的图像

  知道函数的解析式,要画函数的图像,一般分为列表,描点,连线三个步骤

  4 正比例函数

  41 正比例函数

  一般地,函数y=kx(k是不等于零的常数)叫做正比例函数,其中常数k叫做变量y与x之间的比例函数确定了比例函数k,就可以确定一个正比例函数

  正比例函数y=kx有下列性质:

  (3) 当k>0时,它的图像经过第一,三象限,y随着x的值增大而增大;当k<0时,他的图像经过第二,四象限,y随着x的增大而减小

  (2)随着比例函数的绝对值的增加,函数图像渐渐离开x轴而接近于y轴,因此,比例系数k和直线y=kx与x轴正方向所成的角有关据此,k叫做直线y=kx的斜率

  42 反比例函数

  一般地,函数y=k/x(k是不等于0的常数)叫做反比例函数

  反比例函数y=k/x有下列性质:

  (7) 当k>0时,他的图像的两个分支分别位于第一,三象限内,在每一个象限内,y随x的值增大而减小;当k<0时,它的图像的两个分支分别位于第二、四象限内,在每一个象限内,y随x的`增大而增大

  (8) 它的图像的两个分支都无限接近但永远不能达到x轴和y轴

  5 一次函数及其图像

  51 一次函数及其图像

  如果k=0时,函数变形为y=b,无论x在其定义域内取何值,y都有唯一确定的值b与之对应,这样的函数我们称它为常函数

  直线y=kx+b与y轴交与点(0,b),b叫做直线y=kx+b在y轴上的截距,简称纵截距

  52 一次函数的性质

  函数y=f(小),在a〈x〈b上,如果函数值随着自变量x的值增加而增加,那么我们说函数f(x)在a〈x

  如果分别画出两个二元一次方程所对应的一次函数图像,交点的坐标就是这个方程组的解,这种求二元一次方程组的解法叫图像法

  初中数学正方形定理公式

  关于正方形定理公式的内容精讲知识,希望同学们很好的掌握下面的内容。

  正方形定理公式

  正方形的特征:

  ①正方形的四边相等;

  ②正方形的四个角都是直角;

  ③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;

  正方形的判定:

  ①有一个角是直角的菱形是正方形;

  ②有一组邻边相等的矩形是正方形。

  希望上面对正方形定理公式知识的讲解学习,同学们都能很好的掌握,相信同学们会取得很好的成绩的哦。

  初中数学平行四边形定理公式

  同学们认真学习,下面是老师对数学中平行四边形定理公式的内容讲解。

  平行四边形

  平行四边形的性质:

  ①平行四边形的对边相等;

  ②平行四边形的对角相等;

  ③平行四边形的对角线互相平分;

  平行四边形的判定:

  ①两组对角分别相等的四边形是平行四边形;

  ②两组对边分别相等的四边形是平行四边形;

  ③对角线互相平分的四边形是平行四边形;

  ④一组对边平行且相等的四边形是平行四边形。

  上面对数学中平行四边形定理公式知识的讲解学习,同学们都能很好的掌握了吧,相信同学们会从中学习的更好的哦。

  初中数学直角三角形定理公式

  下面是对直角三角形定理公式的内容讲解,希望给同学们的学习很好的帮助。

  直角三角形的性质:

  ①直角三角形的两个锐角互为余角;

  ②直角三角形斜边上的中线等于斜边的一半;

  ③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);

  ④直角三角形中30度

  角所对的直角边等于斜边的一半;

  直角三角形的判定:

  ①有两个角互余的三角形是直角三角形;

  ②如果三角形的三边长a、b 、c有下面关系a^2+b^2=c^2

  ,那么这个三角形是直角三角形(勾股定理的逆定理)。

  以上对数学直角三角形定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们都能考试成功。

  初中数学等腰三角形的性质定理公式

  下面是对等腰三角形的性质定理公式的内容学习,希望同学们认真看看。

  等腰三角形的性质:

  ①等腰三角形的两个底角相等;

  ②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)

  上面对等腰三角形的性质定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们在考试中取得很好的成绩。

  初中数学三角形定理公式

  对于三角形定理公式的学习,我们做下面的内容讲解学习哦。

  三角形

  三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;

  三角形的内角和定理:三角形的三个内角的和等于180度;

  三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;

  三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;

  三角形的三条角平分线交于一点(内心);

  三角形的三边的垂直平分线交于一点(外心);

  三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;

  以上对三角形定理公式的内容讲解学习,希望同学们都能很好的掌握,并在考试中取得很好的成绩哦。

人教版初中数学公式大全6

  1、 每份数×份数=总数 总数÷每份数=份数总数÷份数=每份数

  2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数

  3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度

  4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价

  5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率

  6、 加数+加数=和 和-一个加数=另一个加数 7、 被减数-减数=差 被减数-差=减数 差+减数=被减数

  8、 因数×因数=积 积÷一个因数=另一个因数 9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 小学数学图形计算公式

  1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a

  2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a

  3 、长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab

  4 、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh

  5 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高

  6 平行四边形 s面积 a底 h高 面积=底×高 s=ah

  7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2

  8 圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r (2)面积=半径×半径×∏

  9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长

  (1)侧面积=底面周长×高

  (2)表面积=侧面积+底面积×2

  (3)体积=底面积×高

  (4)体积=侧面积÷2×半径

人教版初中数学公式大全7

  某些数列前n项和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

  两角和公式

  sin(A+B)=sinAcosB+cosAsinB

  sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB

  cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB)

  tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)

  ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

  和差化积

  2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB

  ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

  公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)

  平方差公式:a平方-b平方=(a+b)(a-b)

  完全平方和公式:(a+b)平方=a平方+2ab+b平方

  完全平方差公式:(a-b)平方=a平方-2ab+b平方

  两根式:ax^2+bx+c=a[x-(-b+√(b^2-4ac))/2a][x-(-b-√(b^2-4ac))/2a]两根式

  立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2)

  立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2)

  完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.

  倍角公式

  tan2A=2tanA/(1-tan2A)

  ctg2A=(ctg2A-1)/2ctga

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

人教版初中数学公式大全8

  辅助角公式:

  Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

  sint=B/(A^2+B^2)^(1/2)

  cost=A/(A^2+B^2)^(1/2)

  tant=B/A

  Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

  初中数学正方形定理公式

  正方形定理公式

  正方形的特征:

  ①正方形的四边相等;

  ②正方形的四个角都是直角;

  ③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;

  正方形的判定:

  ①有一个角是直角的菱形是正方形;

  ②有一组邻边相等的矩形是正方形。

  希望上面对正方形定理公式知识的讲解学习,同学们都能很好的掌握,相信同学们会取得很好的'成绩的哦。

  初中数学平行四边形定理公式

  平行四边形

  平行四边形的性质:

  ①平行四边形的对边相等;

  ②平行四边形的对角相等;

  ③平行四边形的对角线互相平分;

人教版初中数学公式大全9

  平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

  三角形相似定理

  1 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)

  2 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

  3 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)

  4 判定定理3 三边对应成比例,两三角形相似(SSS)

  5 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

  6 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

  7 性质定理2 相似三角形周长的比等于相似比

  三角形相似定理考点归纳:相似三角形面积的比等于相似比的平方。

  正方形定理公式

  正方形的特征:

  ①正方形的四边相等;

  ②正方形的四个角都是直角;

  ③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;

  正方形的判定:

  ①有一个角是直角的菱形是正方形;

  ②有一组邻边相等的矩形是正方形。

  希望上面对正方形定理公式知识的讲解学习,同学们都能很好的掌握,相信同学们会取得很好的成绩的哦。

  平行四边形

  平行四边形的性质:

  ①平行四边形的对边相等;

  ②平行四边形的对角相等;

  ③平行四边形的对角线互相平分;

  平行四边形的判定:

  ①两组对角分别相等的四边形是平行四边形;

  ②两组对边分别相等的四边形是平行四边形;

  ③对角线互相平分的四边形是平行四边形;

  ④一组对边平行且相等的四边形是平行四边形。

  直角三角形的性质:

  ①直角三角形的两个锐角互为余角;

  ②直角三角形斜边上的中线等于斜边的一半;

  ③直角三角形的两直角边的'平方和等于斜边的平方(勾股定理);

  ④直角三角形中30度

  角所对的直角边等于斜边的一半;

  直角三角形的判定:

  ①有两个角互余的三角形是直角三角形;

  ②如果三角形的三边长a、b 、c有下面关系a^2+b^2=c^2,那么这个三角形是直角三角形(勾股定理的逆定理)。

  等腰三角形的性质:

  ①等腰三角形的两个底角相等;

  ②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)

  三角形

  三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;

  三角形的内角和定理:三角形的三个内角的和等于180度;

  三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;

  三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;

  三角形的三条角平分线交于一点(内心);

  三角形的三边的垂直平分线交于一点(外心);

  三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;

人教版初中数学公式大全10

  1 正方形

  C周长 S面积 a边长

  周长=边长×4

  C=4a

  面积=边长×边长

  S=a×a

  2 正方体

  V:体积 a:棱长

  表面积=棱长×棱长×6

  S表=a×a×6

  体积=棱长×棱长×棱长

  V=a×a×a

  3 长方形

  C周长 S面积 a边长

  周长=(长+宽)×2

  C=2(a+b)

  面积=长×宽

  S=ab

  4 长方体

  V:体积 s:面积 a:长 b: 宽 h:高

  (1)表面积(长×宽+长×高+宽×高)×2

  S=2(ab+ah+bh)

  (2)体积=长×宽×高

  V=abh

  5 三角形

  s面积 a底 h高

  面积=底×高÷2

  s=ah÷2

  三角形高=面积 ×2÷底

  三角形底=面积 ×2÷高

  6 平行四边形

  s面积 a底 h高

  面积=底×高

  s=ah

  7 梯形

  s面积 a上底 b下底 h高

  面积=(上底+下底)×高÷2

  s=(a+b)× h÷2

  8 圆形

  S面积 C周长 ∏ d=直径 r=半径

  (1)周长=直径×∏=2×∏×半径

  C=∏d=2∏r

  (2)面积=半径×半径×∏

  9 圆柱体

  v:体积 h:高 s;底面积 r:底面半径 c:底面周长

  (1)侧面积=底面周长×高

  (2)表面积=侧面积+底面积×2

  (3)体积=底面积×高

  (4)体积=侧面积÷2×半径

  10 圆锥体

  v:体积 h:高 s;底面积 r:底面半径

  体积=底面积×高÷3

  总数÷总份数=平均数

  和差问题的公式

  (和+差)÷2=大数

  (和-差)÷2=小数

  和倍问题

  和÷(倍数-1)=小数

  小数×倍数=大数

  (或者 和-小数=大数)

  差倍问题

  差÷(倍数-1)=小数

  小数×倍数=大数

  (或 小数+差=大数)

人教版初中数学公式大全11

  1 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半

  2 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L=(a+b)2 S=Lh

  3 (1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d

  4 (2)合比性质 如果a/b=c/d,那么(ab)/b=(cd)/d

  5 (3)等比性质 如果a/b=c/d==m/n(b+d++n0),那么 (a+c++m)/(b+d++n)=a/b

  6 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 线段成比例

  7 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

  8 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

  9 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

  10 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

  11 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)

  12 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

  13 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)

  14 判定定理3 三边对应成比例,两三角形相似(SSS)

  15 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

  16 性质定理1 相似三角形对应高的比,对应中线的比与对应角平 分线的比都等于相似比

  17 性质定理2 相似三角形周长的比等于相似比

  18 性质定理3 相似三角形面积的比等于相似比的平方

  19 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值

  20任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 于它的余角的正切值

  21圆是定点的距离等于定长的点的集合

  22圆的内部可以看作是圆心的距离小于半径的点的集合

  23圆的外部可以看作是圆心的距离大于半径的点的集合

  24同圆或等圆的半径相等

  25到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 径的圆

  26和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直 平分线

  27到已知角的两边距离相等的点的轨迹,是这个角的平分线

  28到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距 离相等的一条直线

  29定理 不在同一直线上的三点确定一个圆。

  30垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  31推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  32推论2 圆的两条平行弦所夹的`弧相等

  33圆是以圆心为对称中心的中心对称图形

  34定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等

  35推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

  36定理 一条弧所对的圆周角等于它所对的圆心角的一半

  37推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

  38推论2 半圆(或直径)所对的圆周角是直角;90的圆周角所 对的弦是直径

  39推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

  40定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角

人教版初中数学公式大全12

  常用数学公式

  乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

  三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

  |a-b|≥|a|-|b| -|a|≤a≤|a|

  一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

  根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理

  判别式 b2-4ac=0 注:方程有两个相等的实根

  b2-4ac>0 注:方程有两个不等的实根

  b2-4ac<0 注:方程没有实根,有共轭复数根

  看过初中数学公式表之常用数学公式,相信同学们都熟知乘法与因式分解、三角不等式、一元二次方程的解、根与系数的关系等公式内容了吧。接下来还有更多的初中数学讯息尽在哦。

  初中数学正方形定理公式

  关于正方形定理公式的内容精讲知识,希望同学们很好的掌握下面的内容。

  正方形定理公式

  正方形的特征:

  ①正方形的四边相等;

  ②正方形的四个角都是直角;

  ③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;

  正方形的判定:

  ①有一个角是直角的菱形是正方形;

  ②有一组邻边相等的矩形是正方形。

  希望上面对正方形定理公式知识的讲解学习,同学们都能很好的掌握,相信同学们会取得很好的成绩的哦。

  初中数学平行四边形定理公式

  同学们认真学习,下面是老师对数学中平行四边形定理公式的内容讲解。

  平行四边形

  平行四边形的性质:

  ①平行四边形的对边相等;

  ②平行四边形的对角相等;

  ③平行四边形的对角线互相平分;

  平行四边形的判定:

  ①两组对角分别相等的四边形是平行四边形;

  ②两组对边分别相等的四边形是平行四边形;

  ③对角线互相平分的四边形是平行四边形;

  ④一组对边平行且相等的四边形是平行四边形。

  上面对数学中平行四边形定理公式知识的讲解学习,同学们都能很好的掌握了吧,相信同学们会从中学习的更好的哦。

  初中数学直角三角形定理公式

  下面是对直角三角形定理公式的内容讲解,希望给同学们的学习很好的帮助。

  直角三角形的性质:

  ①直角三角形的两个锐角互为余角;

  ②直角三角形斜边上的中线等于斜边的一半;

  ③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);

  ④直角三角形中30度

  角所对的直角边等于斜边的一半;

  直角三角形的判定:

  ①有两个角互余的三角形是直角三角形;

  ②如果三角形的三边长a、b 、c有下面关系a^2+b^2=c^2

  ,那么这个三角形是直角三角形(勾股定理的逆定理)。

  以上对数学直角三角形定理公式的`内容讲解学习,同学们都能很好的掌握了吧,希望同学们都能考试成功。

  初中数学等腰三角形的性质定理公式

  下面是对等腰三角形的性质定理公式的内容学习,希望同学们认真看看。

  等腰三角形的性质:

  ①等腰三角形的两个底角相等;

  ②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)

  上面对等腰三角形的性质定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们在考试中取得很好的成绩。

  初中数学三角形定理公式

  对于三角形定理公式的学习,我们做下面的内容讲解学习哦。

  三角形

  三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;

  三角形的内角和定理:三角形的三个内角的和等于180度;

  三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;

  三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;

  三角形的三条角平分线交于一点(内心);

  三角形的三边的垂直平分线交于一点(外心);

  三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;

  以上对三角形定理公式的内容讲解学习,希望同学们都能很好的掌握,并在考试中取得很好的成绩哦。

人教版初中数学公式大全13

  几何公式、定理:

  1 过两点有且只有一条直线

  2 两点之间线段最短

  3 同角或等角的补角相等

  4 同角或等角的余角相等

  5 过一点有且只有一条直线和已知直线垂直

  6 直线外一点与直线上各点连接的所有线段中,垂线段最短

  7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行

  8 如果两条直线都和第三条直线平行,这两条直线也互相平行

  9 同位角相等,两直线平行

  10 内错角相等,两直线平行

  11 同旁内角互补,两直线平行

  12两直线平行,同位角相等

  13 两直线平行,内错角相等

  14 两直线平行,同旁内角互补

  15 定理 三角形两边的和大于第三边

  16 推论 三角形两边的差小于第三边

  17 三角形内角和定理 三角形三个内角的和等于180°

  18 推论1 直角三角形的两个锐角互余

  19 推论2 三角形的一个外角等于和它不相邻的两个内角的和

  20 推论3 三角形的一个外角大于任何一个和它不相邻的内角

  正方形定理公式

  正方形的特征:

  ①正方形的四边相等;

  ②正方形的四个角都是直角;

  ③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;

  正方形的`判定:

  ①有一个角是直角的菱形是正方形;

  ②有一组邻边相等的矩形是正方形。

  平行四边形

  平行四边形的性质:

  ①平行四边形的对边相等;

  ②平行四边形的对角相等;

  ③平行四边形的对角线互相平分;

  平行四边形的判定:

  ①两组对角分别相等的四边形是平行四边形;

  ②两组对边分别相等的四边形是平行四边形;

  ③对角线互相平分的四边形是平行四边形;

  ④一组对边平行且相等的四边形是平行四边形。

  直角三角形的性质:

  ①直角三角形的两个锐角互为余角;

  ②直角三角形斜边上的中线等于斜边的一半;

  ③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);

  ④直角三角形中30度

  角所对的直角边等于斜边的一半;

  直角三角形的判定:

  ①有两个角互余的三角形是直角三角形;

  ②如果三角形的三边长a、b 、c有下面关系a^2+b^2=c^2

  那么这个三角形是直角三角形(勾股定理的逆定理)。

  等腰三角形的性质:

  ①等腰三角形的两个底角相等;

  ②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)

  上面对等腰三角形的性质定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们在考试中取得很好的成绩。

  三角形

  三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;

  三角形的内角和定理:三角形的三个内角的和等于180度;

  三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;

  三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;

  三角形的三条角平分线交于一点(内心);

  三角形的三边的垂直平分线交于一点(外心);

  三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;

人教版初中数学公式大全14

  教学目标

  1.了解公式的意义,使学生能用公式解决简单的实际问题;

  2.初步培养学生观察、分析及概括的能力;

  3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

  教学建议

  一、教学重点、难点

  重点:通过具体例子了解公式、应用公式.

  难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

  二、重点、难点分析

  人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

  三、知识结构

  本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的'先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

  四、教法建议

  1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

  2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

  3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

  教学设计示例

  公式

  一、教学目标

  (一)知识教学点

  1.使学生能利用公式解决简单的实际问题.

  2.使学生理解公式与代数式的关系.

  (二)能力训练点

  1.利用数学公式解决实际问题的能力.

  2.利用已知的公式推导新公式的能力.

  (三)德育渗透点

  数学来源于生产实践,又反过来服务于生产实践.

  (四)美育渗透点

  数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.

  二、学法引导

  1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点

  2.学生学法:观察→分析→推导→计算

  三、重点、难点、疑点及解决办法

  1.重点:利用旧公式推导出新的图形的计算公式.

  2.难点:同重点.

  3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪,自制胶片。

  六、师生互动活动设计

  教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.

  七、教学步骤

  (一)创设情景,复习引入

  师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏.

  在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题.

  板书: 公式

  师:小学里学过哪些面积公式?

  板书: S = ah

  附图

  (出示投影1)。解释三角形,梯形面积公式

  【教法说明】让学生感知用割补法求图形的面积。

  (二)探索求知,讲授新课

  师:下面利用面积公式进行有关计算

  (出示投影2)

  例1 如图是一个梯形,下底 (米),上底 ,高 ,利用梯形面积公式求这个梯形的面积S。

  师生共同分析:1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗?

  2.题中“M”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作 等)

  学生口述解题过程,教师予以指正并指出,强调解题的规范性.

  【教法说明】1.通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量.2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯.

  (出示投影3)

  例2 如图是一个环形,外圆半径 ,内圆半径 求这个环形的面积

  学生讨论:1.环形是怎样形成的.2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导.

  评讲时注意1.如果有学生作了简便计算 ,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算.

  2.本题实际上是由圆的面积公式推导出环形面积公式.

  3.进一步强调解题的规范性

  教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径.

  测试反馈,巩固练习

  (出示投影4)

  1.计算底 ,高 的三角形面积

  2.已知长方形的长是宽的1.6倍,如果用a表示宽,那么这个长方形的周长 是多少?当 时,求t

  3.已知圆的半径 , ,求圆的周长C和面积S

  4.从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走 千米,下坡时每小时走 千米。

  (1)求A地到B地所用的时间公式。

  (2)若 千米/时, 千米/时,求从A地到B地所用的时间。

  学生活动:分两次完成,每次两题,两人板演,其他同学在练习本上完成,做好后同桌交换评判,第一次可请两位基础较差的同学板演,第二次请中等层次的学生板演.

  【教法说明】面向全体,分层教学,能照顾两极,使所有的同学有所发展.

  师:公式本身是用等号联接起来的代数式,许多公式在实际中都有重要的用处,可以用公式直接计算还可以利用公式推导出新的公式.

  八、随堂练习

  (一)填空

  1.圆的半径为R,它的面积 ________,周长 _____________

  2.平行四边形的底边长是 ,高是 ,它的面积 _____________;如果 , ,那么 _________

  3.圆锥的底面半径为 ,高是 ,那么它的体积 __________如果 , ,那么 _________

  (二)一种塑料三角板形状,尺寸如图,它的厚度是 ,求它的体积V,如果 , , ,V是多少?

  九、布置作业

  (一)必做题课本第22页1、2、3第23页B组1

  (二)选做题课本第22页5B组2

  十、板书设计

  附:随堂练习答案

  (一)1。 2。 3。

  (二)

  作业答案

  必做题1。

  2。 3。

  选做题5。

  探究活动

  根据给出的数据推导公式。

人教版初中数学公式大全15

  梯形中位线定理

  梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h

  (1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d

  (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d

  (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例

  推论 平行于三角形一边的直线截其他两边(或两边的.延长线),所得的对应线段成比例

  定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角 形的第三边

  平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

  看过梯形中位线定理,聪明的同学都知道梯形的中位线平行于两底,并且等于两底和的一半了吧。

【初中数学公式】相关文章:

初中数学公式总结12-01

人教版初中数学公式大全10-29

人教版初中数学公式大全12-30

初中数学公式总结(5篇)11-18

初中数学公式总结5篇09-25

【荐】人教版初中数学公式大全10-15

人教版初中数学公式大全[经典15篇]11-04

人教版初中数学公式大全精选(15篇)02-07

人教版初中数学公式大全精选(15篇)11-03

(热)人教版初中数学公式大全15篇09-24