初中数学教学设计案例优秀

时间:2024-09-21 12:23:21 初中数学 我要投稿
  • 相关推荐

初中数学教学设计案例优秀

  在教学工作者实际的教学活动中,有必要进行细致的教学设计准备工作,编写教学设计有利于我们科学、合理地支配课堂时间。那么写教学设计需要注意哪些问题呢?下面是小编精心整理的初中数学教学设计案例优秀,供大家参考借鉴,希望可以帮助到有需要的朋友。

初中数学教学设计案例优秀

初中数学教学设计案例优秀1

  新课程标准指出:“问题是思想方法、知识积累和发展的逻辑力量,是生长新知识、新方法的种子。”有问题才有探究,有探究才有发展、有创新。学生思维的过程受情境的影响。良好的思维情境会激发思维动机,唤起求知欲望;不好的思维情境会抑制学生的思维热情。因此,创设良好的思维情境在数学教学中就显得十分重要。教师通过自己的教学活动,有意识地培养学生善于在好的问题情景下主动建构新知识,积极参与交流和讨论,不断提高学习能力,发展创新意识。

  一、联系学生的生活实际,创设问题情境

  生活离不开数学,数学也离不开生活。实践证明:联系学生已有的生活经验和学生熟悉的事物入手展开教学,有利于学生更好的掌握数学知识。

  例如在教学菱形性质时,导入时是这样设计的:

  1、我们大家在日常生活中见过哪些菱形图案?(看谁说的多)学生争先恐后地说:

  (1)吃过的菱形形状的食物

  (2)春节时门上贴的剪纸花

  (3)居室装饰地板砖

  (4)中国结

  (5)菱形衣帽架等。

  2、为什么把这些图案设计成菱形呢?

  3、菱形到底有哪些特殊的性质和运用呢?(板书课题)通过本节课的学习之后大家可以总结出来。

  然后通过画图和电脑显示,让学生去猜想,去探究,去发现,去论证。从而弄清了菱形的定义、性质、面积公式及简单运用,然后让学生思考日常生活中还有哪些菱形性质方面的应用。

  这样通过创设问题情境,让学生产生一种好奇,一种对知识的渴望,为探究活动创造了良好的条件,为本节课的成功创造了条件。同时让学生感受到了数学问题来源于生活。让学生多留意身边的事物转化成数学问题。但教学中要注意从实际出发,创设学生所熟悉的喜闻乐见的东西。同时不是为情趣而情趣,要注意增加情趣的内涵。注意经常引导学生用数学的眼光看待周围的事物,培养学生数学问题意识。

  二、变更表述形式,创设问题情境

  在数学教学中教师可以运用直观形象的具体材料,创设问题情境,设障布疑,激发学生思维的积极性和求知需要的一种教学方法——有时可通过变更问题的表述形式,引发学生兴趣。例如:“等腰三角形的判定定理”的教学,为引出等腰三角形的判定定理,通常提出问题:“如图(1),△ABC要判定它是等腰三角形

  BC A有哪些方法呢?”这样出示问题显得单调又乏味。为了同样的教图(1)学目的(引导学生获得判定定理),教师若能根据“性质定理”与“判定定理”的内在联系,在引导学生性质定理后,提出这样一个实际问题“如图(2),△ABC是等腰三角形,AB=AC,因不小心,它的一部分被墨水涂没了,只留下一条底边BC和一个底角∠C,试问能否把原来的△ABC重新画出来?”不仅引发了生动活泼的讨论形式,而且也收到良好的.引发效果,(有的先度量∠C度数,再以BC为边作∠B=∠C;有的取BC中点D,过D作BC的垂线等)。由此可见,在定理或概念性较强的性质的教学中,应尽力创设问题情境,使学生认识到所学内容的意义,使他们产生学习需要,形成学习的内驱力,诱发学生积极思维,在教师的指导下,让学生主动去探索解决问题的办法,在实践中培养学生的创造能力。

  三、猜想验证法,创设问题情境

  在数学教学中,利用猜想验证的课堂教学模式创设问题情境,可以积极的促进学生有效的参与课堂教学,学生兴趣高涨,主动的进行猜想验证。

  例如,在教学“三角形的内角和”时,我先请同学们试先量一量自己准备好的。三角形的每一个内角的度数,然后告诉我其中两个内角的度数,我迅速的说出第三个内角的度数。同学们都感到很惊讶!为什么老师能很快的说出第三个内角的度数呢?通过观察他们发现:每个三角形的内角和都是180度。我问他们是不是任何一个三角形的内角和都是180度呢?他们的回答是肯定的。我说这只不过是你们的一个猜想,下面就请同学们利用你手中的学具来验证你的猜想。于是,同学们立刻想到了手中的三角板,积极的行动起来证明自己的猜想。

  总之,创设问题情境,培养学生问题意识,一方面能激发学生学习动机、培养创新思维,是新课程理念下数学教学的重要环节。另一方面有助于学生积极地建构数学知识,在情境中自主的参与探究和相互交流,从而达到意义建构的目的,提高课堂教学的有效性。当然教学没有最好,只有更好,让我们在今后的教学过程中不断探索,不断创新,争取更打的进步。

初中数学教学设计案例优秀2

  一、教材

  《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。

  二、学情

  学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的.距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法研究点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。

  三、教学目标

  (一)知识与技能目标

  能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。

  (二)过程与方法目标

  经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。

  (三)情感态度价值观目标

  激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。

  四、教学重难点

  (一)重点

  用解析法研究直线与圆的位置关系。

  (二)难点

  体会用解析法解决问题的数学思想。

  五、教学方法

  根据本节课教材内容的特在教学中采用小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,教师始终坚持启发式教学原则,设计一系列问题串,以引导学生的数学思维活动。

  六、教学过程

  (一)导入新课

  教师借助多媒体创设泰坦尼克号的情景,并从中抽象出数学模型:已知冰山的分布是一个半径为r的圆形区域,圆心位于轮船正西的l处,问,轮船如何航行能够避免撞到冰山呢?如何行驶便又会撞到冰山呢?

  教师引导学生回顾初中已经学习的直线与圆的位置关系,将所想到的航行路线转化成数学简图,即相交、相切、相离。

  设计意图:在已有的知识基础上,提出新的问题,有利于保持学生知识结构的连续性,同时开阔视野,激发学生的学习兴趣。

  (二)新课教学——探究新知

  教师提问如何判断直线与圆的位置关系,学生先独立思考几分钟,然后同桌两人为一组交流,并整理出本组同学所想到的思路。在整个交流讨论中,教师既要有对正确认识的赞赏,又要有对错误见解的分析及对该学生的鼓励。

  判断方法:

  (1)定义法:看直线与圆公共点个数

  即研究方程组解的个数,具体做法是联立两个方程,消去x(或y)后所得一元二次方程,判断△和0的大小关系。

  (2)比较法:圆心到直线的距离d与圆的半径r做比较,(三)合作探究——深化新知

  教师进一步抛出疑问,对比两种方法,由学生观察实践发现,两种方法本质相同,但比较法只适合于直线与圆,而定义法适用范围更广。教师展示较为基础的题目,学生解答,总结思路。

  已知直线3x+4y-5=0与圆x2+y2=1,判断它们的位置关系?

  让学生自主探索,讨论交流,并阐述自己的解题思路。

  当已知了直线与圆的方程之后,圆心坐标和半径r易得到,问题的关键是如何得到圆心到直线的距离d,他的本质是点到直线的距离,便可以直接利用点到直线的距离公式求d。类比前面所学利用直线方程求两直线交点的方法,联立直线与圆的方程,组成方程组,通过方程组解得个数确定直线与圆的交点个数,进一步确定他们的位置关系。最后明确解题步骤。

  (四)归纳总结——巩固新知

  为了将结论由特殊推广到一般引导学生思考:

  可由方程组的解的不同情况来判断:

  当方程组有两组实数解时,直线l与圆c相交;

  当方程组有一组实数解时,直线l与圆c相切;

  当方程组没有实数解时,直线l与圆c相离。

  活动:我将抽取两位同学在黑板上扮演,并在巡视过程中对部分学生加以指导。最后对黑板上的两名学生的解题过程加以分析完善。通过对基础题的练习,巩固两种判断直线与圆的位置关系判断方法,并使每一个学生获得后续学习的信心。

  (五)小结作业

  在小结环节,我会以口头提问的方式:

  (1)这节课学习的主要内容是什么?

  (2)在数学问题的解决过程中运用了哪些数学思想?

  设计意图:启发式的课堂小结方式能让学生主动回顾本节课所学的知识点。也促使学生对知识网络进行主动建构。

  作业:在学生回顾本堂学习内容明确两种解题思路后,教师让学生对比两种解法,那种更简捷,明确本节课主要用比较d与r的关系来解决这类问题,对用方程组解的个数的判断方法,要求学生课外做进一步的探究,下一节课汇报。

初中数学教学设计案例优秀3

  1、学习方式:

  对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。

  2、学习任务分析:

  充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己以后的证明打下基础。

  3、学生的认知起点分析:

  学生通过前面的学习已了解了图形的.全等的概念及特征,掌握了全等图形的对应边全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作课的操作、探究成为可能。

  4、教学目标:

  (1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用(2)掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定三角形的全等解决一些实际问题。

  (3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验5、教学的重点与难点:

  重点:三角形全等条件的探索过程是本节课的重点。

  从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将数学。

  难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要情况进行讨论,对初一学生有一定的难度。

  根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,够全面,因此要充分发挥教师的主导作用,适时点拨、引导,尽可能调动所有学讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。

  6、教学过程(略)。

  教学步骤教师活动学生活动教学媒体(资源)和教学方式。

  7、反思小结。

  提炼规律。

  电脑显示,带领学生复习全等三角定义及其性质。

  电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等。但是能否尽可能少吗?对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和展学生个性思维。

  按照三角形“边、角”元素进行分类,师生共同归纳得出:。

  1、一个条件:一角,一边。

  2、两个条件:两角;两边;一角一边。

  3、三个条件:三角;三边;两角一边;两边一角。

  按以上分类顺序动脑、动手操作,验证。教师收集学生的作品,加以比较,得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等。

  下面将研究三个条件下三角形全等的判定。

  (1)已知三角形的三个角分别为40°、60°、80°,画出这个三角形,并与同伴比学生得出结论后,再举例体会一下。举例说明:

  如老师上课用的三角尺与同学用的三角板三个角分别对应相等,但一个大一个小,很再如同是:等边三角形,边长不等,两个三角形也不全等。等等。

  (2)已知三角形三条边分别是4cm,5cm,7cm,画出这个三角形,并与同伴比较是否板演:三边对应相等的两个三角形全等,简写为“边边边”或“sss”。

  由上面的结论可知:只要三角形三边的长度确定了,这个三角形的形状和大小就确实物演示:

  类比着三角形,让学生动手操作,研究四边形、五边性有无稳定性。

  图形的稳定性与不稳定性在生活中都有其作用,让学生举例说明。

  题组练习(略)。

  3、(对有能力的学生要求把实际问题抽象成数学问题,根据自己的理解写出推理由,并能说明每一步的根据。)教师带领,回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想在教师引导下回忆前面知识,为探究新知识作好准备。

  议一议:

  学生分小组进行讨论交流。受教师启发,从最少条件开始考虑,一个条件;两个条件;三个况渐渐明朗,进行交流予以汇总,归纳。

  想一想:

  对只给一个条件画三角形,画出的三角形一定全等吗?画一画:

  剪一剪:

  把所画的三角形分别剪下来。

  比一比:

  学生举例说明。

  学生模仿上面的研究方法,独立完成操作过程,通过交流,归纳得出结论。

  鼓励学生自己举出实例,体验数学在生活中的应用。学生那出准备好的硬纸条,进行实验,得出结论:四边形、五边形不具稳定性。

  学生练习。

  学生在教师引导下回顾反思,归纳整理。

  z+z平台演示。

  z+z平台演示,教师加以分析。学生分组讨论,师生互动合作。

  经过对各种情况得分析,归纳,总结,对学生渗透分类讨论的数学思想。结论很显然只需学生想像即可,z+z平台辅助直观演示。学生动手操作,通过实践、自主探索、交流,获得新知。

初中数学教学设计案例优秀4

  教材分析

  1.这节的重点为:去括号。因此,本节所学的知识实际上就是对前面所学知识的一个巩固和深化,要突破这个重点,只有在掌握方法的前提下,通过一定的练习来掌握。

  2.去括号是整式加减的一个重要内容,也是下一章一元一次方程的直接基础,也是今后继续学习整式的乘除、因式分解、方程,以及分式、函数等的重要基础。

  学情分析

  1.去括号法则是教材上的教学内容,学生学习时会经常出现错用法则的现象。实验表明:完全可以用乘法分配律取代去括号法则。这是由于:(1)“去括号法则”,增加了记忆负担和出错的机会,容易出错;(2)去括号的法则增加了解题长度,降低了学习效率;(3)用乘法分配律去括号的学习是同化而非顺应,易于理解与掌握;(4)用乘法分配律去括号是回归本质,返璞归真,且既可减少学习时间,又能提高运算的正确率。

  教学目标

  1.熟练掌握去括号时符号的变化规律;

  2.能正确运用去括号进行合并同类项;

  3.理解去括号的依据是乘法分配律。

  教学重点和难点

  重点

  去括号时符号的变化规律。

  难点

  括号外的因数是负数时符号的变化规律。

  教学过程

  一、创设情景问题

  青藏铁路线上,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的形式速度可以达到120千米/时。

  请问:(3)在格尔木到拉萨路段,列车通过冻土地段比通过非冻土地段多用0.5小时,如果通过冻土地段需要t小时,则这段铁路的全长可以怎么样表示?冻土地段与非冻土地段相差多少千米?

  解:这段铁路的全长为100t+120(t-0.5)(千米)

  冻土地段与非冻土地段相差100t-120(t-0.5)(千米)。

  提出问题,如何化简上面的`两个式子?引出本节课的学习内容。

  二、探索新知

  1.回顾:

  1你记得乘法分配率吗?怎么用字母来表示呢?

  a(b+c)=ab+ac

  2-(-2)=(-1)x(-2)=2+(-3)=(+1)x(-3)=-3

  2.探究

  计算(试着把括号去掉)

  (1)13+(7-5)(2)13-(7-5)

  类比数的运算,去掉下面式子的括号

  (3)a+(b-c)(4)a-(b-c)

  3.解决问题

  100t+120(t-0.5)=100t-120(t-0.5)=

  思考:

  去掉括号前,括号内有几项、是什么符号?去括号后呢?

  去括号的依据是什么?

  三、知识点归纳

  去括号法则:

  如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;

  如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.

  注意事项

  (1)去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;

  (2)括号内原有几项去掉括号后仍有几项.

  四、例题精讲

  例4化简下列各式:

  (1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).

  五、巩固练习

  课本P68练习第一题。

  六、课堂小结

  1.今天你收获了什么?

  2.你觉得去括号时,应特别注意什么?

  七、布置作业

  课本P71习题2.2第2题

初中数学教学设计案例优秀5

  一、案例实施背景

  本节课是20xx-20xx学年度第一学期开学第七周笔者在长青中学的多媒体教室里上的一节公开课,课堂中数学优秀生、中等生及后进生都有,所用教材为北师大版义务教育教科书七年级数学(上册)。

  二、案例主题分析与设计

  本节课是北师大版义务教育教科书七年级数学(上册)——科学记数法,它是在学习乘方的基础上,研究更简便的记数方法,是第二章有理数及其运算的重要组成部分。 《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同

  时通过小组内学生相互协作研究,培养学生合作性学习精神。

  三、案例教学目标

  1、知识与技能:掌握科学记数法的方法,能将一些大数写成科学记数法。

  2、过程与方法:在寻找科学记数法的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。

  3、情感态度与价值观:通过科学记数法的总结,使学生形成数形结合的数学思想方法,以及知识的迁移能力、创新意识和创新精神。

  四、案例教学重、难点

  1、重点:正确运用科学记数法表示较大的数

  2、难点:正确掌握10的幂指数特征,将科学记数法表示的数写成原数

  五、案例教学用具

  1、教具:多媒体平台及多媒体课件、图片

  六、案例教学过程

  一、创设情境,兴趣导学:

  1、展示学生收集的非常大的数,与同学交流,你觉得记录这些数据方便吗?

  2、展示课本第63页图片,现实中,我们会遇到一些比较

  大的数,如世界人口数、地球的半径、光速等,读写这样大的数有一定的困难。

  师:(展示刚才演示过的3个大数)我们能不能找到更好的记数方法使下列各数更加便于读、写?请同学们六个人一组,分组进行讨论。

  (1) 1 370 000 000 (2) 6 400 000 (3) 300 000 000

  生1:答:13.7亿,640万,3亿。

  师:回答正确。这是数字加上单位的记数方法,在小学已经学过,是比较常用的一种方法,可是它有一定的局限性。如果我在3亿后面再加上好多个0,那么这种记数方法还好用吗?生:不好用。(让学生意识到以前所学的方法不够用了)师:接下来我们一起来探索新的记数方法。

  分析:在读写大数时使学生感觉到不方便,从实际生活的需要,自然引入课题,需要寻找一种更简单的方法记数,为新课创设了良好的问题情境。

  二、尝试探索,讲授新课:

  1、探索10n的特征

  计算一下102、103、104、105、1010你发现什么规律?102=100103 =1 00010 4 =10 000105=100 0001010 =10 000 000 000

  (观察并思考,小组讨论)

  (1)结果中“0”的个数与10的指数有什么关系?

  (2)结果的位数与10的指数有什么关系?

  2、练习:将下列个数写成只有一位整数乘以10n的.形式。

  (1)500(2)3000(4)40000

  师:(学生完成之后)可见这种表示方法不仅书写简短,同时还便于读数。这就是我们本节课研究的内容—科学记数法。分析:通过教师引导,学生小组讨论,合作探究,成功地找到表示大数的简便记数方法——科学记数法。

  4、科学记数法:

  像上面这样,把一个大于10的数表示成a×10n的形式(其中1≤a<10,a是整数数位只有一位的数,n是整数),这种记数方法叫做科学记数法。

  (思考,小组讨论)

  10的指数与结果的位数有什么关系?

  分析:这是本节课的重难点:10的幂指数n与原数的整数位数之间的关系。从特殊数据出发,寻找解决问题的方案,这符合“特殊到一般”的认知规律。在探究过程中,学生的探究活动体现了“化繁为简”、“分析归纳”的数学思想。

  三、巩固新知,知识运用:

  1、将下列各数写成科学记数法形式。

  (1)23 000 000(2)453 000 000(3)13 400 000 000 000 000米,用科学记数法表示是多少米?分析:学生的模仿能力强,在分析讨论10的指数与结果的位数有什么关系时,会与前面曾经讨论过的10n联系起来,也可以对知识进行迁移和回顾。再加上学生好奇心都特别强,很想将自己总结出来的结论加以应用,针对以上学生特点,给出相应的练习题。这样学生能够体会到学以致用的乐趣,从而调动学生自主学习的积极性。

  (观察并思考,小组讨论)

  5、如何将一个用科学记数法表示的数写成原数?

  a×10n将a的小数点向右移动n位原数

  分析:这是本节课另一个重点,也是知识的逆向巩固,学生通过寻找写出原数的方法,更加明白在写科学记数法时,如何确定10的指数,同时也学会了如何写出原数。

  练习:人体内约有2.5×10 5个细胞,其原数为多少个?

  七、教学反思:

  数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为“过程”不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得“情感、态度、价值观”方面的体验。

【初中数学教学设计案例优秀】相关文章:

初中数学优秀教学设计02-17

初中英语写作及教学设计优秀案例06-02

中学数学教学设计的模板及案例02-28

高中数学教学案例 高中数学教学设计案例通用09-07

(优秀)初中数学教学设计15篇06-17

初中数学教学设计04-10

初中数学的教学设计09-19

(优)初中数学教学设计05-21

(精选)初中数学案例反思07-12