初中数学课堂教学设计

时间:2024-07-23 12:24:33 初中数学 我要投稿
  • 相关推荐

初中数学课堂教学设计

  作为一位杰出的教职工,时常需要用到教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。那么大家知道规范的教学设计是怎么写的吗?下面是小编整理的初中数学课堂教学设计 ,希望对大家有所帮助。

初中数学课堂教学设计

初中数学课堂教学设计 1

  在平日里,心中难免会有一些新的想法,不妨将其写成一篇心得体会,让自己铭记于心,这样可以记录我们的思想活动。相信许多人会觉得心得体会很难写吧,下面是小编为大家收集的学习《初中数学概念课堂教学设计》心得体会范文,希望能够帮助到大家。

  我在这次国培中学习了“初中数学概念课堂教学设计”。虽只有短短的时间,却让我受益匪浅。

  数学概念是数学命题、数学推理的基础,数学学习的真正开始是从对数学概念的学习开始的,作为一名初中数学老师,我也常常在思考,如何进行概念教学?如何充分利用有限的45分钟,让学生真正理解概念?通过这次国培,给我们今后的数学概念教学提供了一种可以借鉴的教学模式:即“创设问题情景,归纳共同特征——建立数学模型,抽象出概念——在交流中深化概念,辨析概念的内涵与外延——巩固、应用与拓展。”概念教学注意以下几点:

  1、注重了数学与生活之间的联系。

  《数学课程标准》要求:“让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。”数学的每一个概念都是一个数学模型,老师们从学生实际出发,创设了许多有利于学生学习的现实背景与材料,极大的鼓起了学生学习数学的`兴趣。

  2、概念的得出注重了探究过程、分析过程,体现了活动主题。

  通过一组实例,分析共性,找共同特征。

  3、铺垫导入恰当,让预设与生成合情合理。

  课堂教学的优秀与否,既要看预设,又要看生成。做到了新知不新,新概念是在旧概念的基础上滋生和发展出来的,她们这样的引入,符合学生的最近发展区需要,教师适时搭建了一个新旧知识的桥梁,然后引导学生分析、观察,学生就会印象深刻。

  4、注重了数学陷阱的设置。

  把学生对概念理解中的易错点、易混淆点列出来,让学生判断、研究可以让学生对概念理解更深刻。

  5、注重了学科间的渗透。

  在数学教学中,如何使学生形成数学概念,正确的理解和掌握概念是极为重要的,这是学好数学的基础之一。要让学生真正理解概念,要把握好以下三点:

  一要注重联系生活原型,对概念作通俗解释,体验探究数学问题的乐趣;

  二要注重揭示概念的本质,准确理解概念的内涵与外延;

  三要注重概念的实际应用,实现知识的升华。

初中数学课堂教学设计 2

  关注课堂教学设计,注重课堂的开放性、生成性和创新性的教学设计是营造一个宽松和谐的学习环境必要手段。教师必须把课的主动权放给学生,自己和学生在课堂上都要“活”起来,让学生敢想、敢问、敢做。教师要为学生提供充分发展个性的机会,充分尊重、理解、信任他们,这样才能激发他们的上进心,主动参与数学学习活动。

  教师要优化问题情境,让学生亲近数学,在数学教学中要不失时机地创造问题情境,诱发学生的学习积极性,促进学生思维的可持续发展,为学生学习数学做好充分的心理准备。

  一、问题设计要有生活性

  数学来源于生活,教师问题的设置要让学生感觉到数学就在他们的周围。如学习“菱形的性质”一节时,教师带了一个可伸缩的衣帽架展现给同学们,将它伸缩成各种形状的菱形,并说固定在墙上既美观又实用,为学生提供了和谐的气氛。这样就强化了学生的感性认识,从而达到了学生对数学的理解。

  二、问题设计要有挑战性

  课堂提问是课堂教学中教师、学生、教材相互交流、相互撞击的重要双边教学形式,是教师有较高智能和较高教学水平的具体体现。对课堂提问的原则、功能、技巧的认识程度决定于教师课堂教学能动性的差异,直接影响着课堂教学效果和学生思维的成败。因此,教师在教学中要根据教学内容、学生的年龄特征,创设新奇的、具有神秘色彩的问题情境。

  三、问题设计要有发现性

  问题情境要不断激发学生的学习动机,使学生处于“奋发”的状态中,给学生提供思维的空间,让他们学会自主学习,变“学会”为“会学”。如几何题“三线合一定理”,它叙述了高线、中线、角平分线在等腰三角形内三者之间的关系规律,这一节课开始可在复习高线、中线、角平分线概念的基础上提出一系列问题:

  (1)三角形一边上的高线(中线、角平分线)有什么性质?

  (2)等腰三角形一边上的高线(中线、角平分线)有什么性质?

  (3)在同一个三角形中作一边高线、中线、角平分线(这边所对的顶角)是怎样的?由此层层展开论证,开辟了知识的新领域,激发了学生求知的'新兴趣。

  四、问题设计要有针对性

  一个好的问题情境有助于问题的解决,有助于唤起学生对教学目标的情感,增强目标意识。无病呻吟的设计非但不能使学生领悟要领,相反更容易使他们误入歧途。因此,问题情境的设置要触及问题的本质,要针对教材、针对学生。

  五、问题设计要有实效性

  教师不管学生回答的问题质量如何,都应该给予肯定,使学生经历一次获得结论的过程,培养他们的逻辑思维能力。有些教师在讲述专题内容时,基本直接告诉学生已有的结论或解决问题的程序,而不是启发引导学生参与知识的发生、经历探索活动的过程,因此在许多课堂教学中问题教学的偏差仍普遍存在,使得数学问题教学的误区在不同程度上影响着学生的潜能的开发,缺乏问题情境的实效性。

  复习提问中教师要善于设疑,问题的形式要新颖、富有情趣,为学生所喜闻乐“答”。

  从提问的内容角度看,课堂教学提问要做到四忌:

  (1)重点处发问点拨,切忌不痛不痒;

  (2)要间接问有关知识,切忌离题太远;

  (3)巩固性知识提问,要归类记忆,切忌肤浅零杂;

  (4)难点反复设疑,要深入浅出,切忌散乱无序。

  总之,提问的技巧按课堂题材的不同应丰富多样、精心设计,使学生在课堂提问中迸发出创造的火花。好的课堂教学应该有宽松和谐的学习气氛,使学生在学习过程中产生丰富的情感体验,对学习数学产生兴趣,也会有积极主动的参与热情。教师生动的语言、和蔼的态度、富有启发性和创造性的问题、有探索性的活动等都可以为学生创造和谐的环境。课堂提问不应是孤立地单项使用,而应有机结合地使用各种技巧提问,才能发挥课堂提问的作用。提问的过程不仅是诱导学生参与,它必须使学生给出其回答的理由,要对学生进行思维训练,让学生学会思考问题、解决问题,从而真正学会学习。

初中数学课堂教学设计 3

一、教学目标:

  1、经历观察、发现、探究中心对称图形的有关概念和基本性质的过程,积累一定的审美体验。

  2、了解中心对称图形及其基本性质,掌握平行四边形也是中心对称图形。

  二、教学重、难点:

  理解中心对称图形的概念及其基本性质。

  三、教学过程:

  (一)创设问题情境

  1、以魔术创设问题情境:教师通过扑克牌魔术的演示引出研究课题,激发学生探索“中心对称图形”的兴趣。

  【魔术设计】:师取出若干张非中心对称的扑克牌和一张是中心对称的牌,按牌面的多数指向整理好(如上图),然后请一位同学上台任意抽出一张扑克,把这张牌旋转180O后再插入,再请这位同学洗几下,展开扑克牌,马上确定这位同学抽出的扑克。

  (课堂反应:学生非常安静,目不转睛地盯着老师做动作。每完成一个动作之后,学生就进入沉思状态,接着就是小声议论。)

  师重复以上活动

  2次后提问:

  (1)你们知道这是什么原因吗?老师手中的扑克牌图案有什么特点?

  (2)你能说明为什么老师要把抽出的这张牌旋转1800吗?(小组讨论)

  (反思:创设问题情境主要在于下面几点理由:

  (1)采取从学生最熟悉的实际问题情境入手的方式,贴近学生的生活实际,让学生认识到数学来源于生活,又服务于生活,进一步感悟到把实际问题抽象成数学问题的训练,从而激发学生的求知欲。

  (2)所有新知识的学习都以对相关具体问题情境的探索作为开始,它们是学生了解与学习这些新知识的有效方法,同时也活跃了课堂气氛,激发学生的学习兴趣。

  (3)通过扑克魔术创设问题情境,学生获得的答案将是丰富的。在最后交流归纳时,他们感觉到,自己在活动中“研究”的成果,对最终形成规范、正确的结论是有贡献的,从而激发他们更加注意学习方式和“研究”方式。这也是对他们从事科学研究的情感态度的培养。学生勤于动手、乐于探究,发展学生实践应用能力和创新精神成为可行。)

  2、教师揭示谜底。

  利用“Z+Z”课件游戏演示牌面,请学生找一找哪张牌旋转

  180O后和原来牌面一样。

  3、学生通过动手分析上述扑克牌牌面、独立思考、探究、合作交流等活动,得到答案:

  (1)只有一张扑克牌图案颠倒后和原来牌面一样。

  (2)其余扑克牌颠倒后和原来牌面不一样,因此,老师事先按牌面的多数(少数)指向整理好,把任意抽出的一张扑克牌旋转180O后,就可以马上在一堆扑克牌中找出它。

  (反思:本环节是在扑克魔术揭密问题的具体背景下,通过学生自己的观察、发现、总结、归纳,进一步理解中心对称图形及其特点,发展空间观念,突出了数学课堂教学中的探索性。从而培养了学生观察、概括能力,让学生尝到了成功的喜悦,激发了学生的发现思维的火花。)

  (二)学生分组讨论、思考探究:

  1、师问:生活中有哪些图形是与这张扑克牌一样,旋转180O后和原来一样?

  生举例:线段、平行四边形、矩形、菱形、正方形、圆、飞机的双叶螺旋桨等。

  2、你能将下列各图分别绕其上的一点旋转180O,使旋转前后的图形完全重合吗?(先让学生思考,允许有困难的学生利用“Z+Z”演示其旋转过程。)

  3、有人用“中心对称图形”一词描述上面的这些现象,你认为这个词是什么含义?

  (对于抽象的概念教学,要关注概念的实际背景与形成过程,加强数学与生活的联系,力求让学生采取发现式的学习方式,通过“想一想”、“议一议”、 “动一动”等多种活动形式,帮助学生克服记忆概念的学习方式。)

  (三)教师明晰,建立模型

  1、给出“中心对称图形”定义:在平面内,一个图形绕某个点旋转180O,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。

  2、对比轴对称图形与中心对称图形:(列出表格,加深印象)

  轴对称图形中心对称图形有一条对称轴——直线有一个对称中心——点沿对称轴对折绕对称中心旋转180O对折后与原图形重合

  旋转后与原图形重合

  (四)解释、应用与拓广

  1、教师用“Z+Z智能教育平台”演示旋转过程,验证上述图形的中心对称性,引导学生讨论、探究中心对称图形的性质。

  (利用计算机《Z+Z智能教育平台》技术,通过图形旋转给出中心对称图形的一个几何解释,目的是使学生对中心对称图形有一个更直观的认识。)

  2、探究中心对称图形的性质

  板书:中心对称图形上的'每一对对应点所连成的线段都被对称中心平分。

  3、师问:怎样找出一个中心对称图形的对称中心?

  (两组对应点连结所成线段的交点)

  4、平行四边形是中心对称图形吗?若是,请找出其对称中心,你怎样验证呢?

  学生分组讨论交流并回答。

  讨论:根据以上的验证方法,你能验证平行四边形的哪些性质?学生分组讨论交流并回答。

  讨论:根据以上的验证方法,你能验证平行四边形的哪些性质?

  5、逆向问题:如果一个四边形是中心对称图形,那么这个四边形一定是平行四边形吗?

  学生讨论回答。

  6、你还能找出哪些多边形是中心对称图形?

  (反思:合作学习是新课程改革中追求的一种学习方法,但合作学习必须建立在学生的独立探索的基础上,否则合作学习将会流于形式,不能起到应有的效果,所于我在上课时强调学生先独立思考,再由当天的小组长组织进行,并由当天的记录员记录小组成员的活动情况(每个小组有一张课堂合作学习参考表,见附录)。)

  (五)拓展与延伸

  1、中国文字丰富多彩、含义深刻,有许多是中心对称的,你能找出几个吗?

  2、正六边形的对称中心怎样确定?

  (六)魔术表演:

  1、师:把4张扑克牌放在桌上,然后把某一张扑克牌旋转180o后,得到右图,你知道哪一张扑克被旋转过吗?

  2、学生小组活动:

  以“引入”为例,在一副扑克牌中,拿出若干张扑克牌设计魔术,相互之间做游戏。

  (新教材的编写,着重突出了用数学活动呈现教学内容,而不是以例题和习题的形式出现。通过多种形式的实践活动,让学生亲历探究与现实生活联系密切的学习过程,使学生在合作中学习,在竞争收获,共同分享成功的喜悦,同时能调节课堂的气氛,培养学生之间的情感。只有这样,学生的创新意识和动手意识才会充分地发挥出来。)

  四、案例小结

  《数学课程标准》提出:“实践活动是培养学生进行主动探索与合作交流的重要途径。”“教师应该充分利用学生已有的生活经验,随时引导学生把所学的数学知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,体会学习数学的重要性。”这两段话,正体现了新教材的重要变化——关注学生的生活世界,学习内容更加贴近实际,同时强调了数学教学让学生动手实践的重要意义和作用。

  现实性的生活内容,能够赋予数学足够的活力和灵性。对许多学生来说,“扑克”和“游戏”是很感兴趣的内容,因此,也具有现实性,即回归生活(玩扑克牌)——让学生感知学习数学可以让生活增添许多乐趣,同时也让学生感知到数学就在我们身边,学生学习的数学应当是生活中的数学,是学生“自己身边的数学”。这样,数学来源于生活,又必须回归于生活,学生就能在游戏中学得轻松愉快,整个课堂显得生动活泼。

初中数学课堂教学设计 4

  教育改革的关键在于教师观念的转变,现代教育理论告诉我们:教师的职责现在已经越来越少地传授知识,而是越来越多地鼓励、思考……将越来越成为一位顾问、一位交流意见的参加者、一位帮助发现而不是拿出现成真理的人,必须拿出更多的时间和精力去从事那些有效果的和有创造性的活动:互相影响、讨论、激励、了解、鼓舞。这说明了一个道理:教师的地位发生了根本性的变化,不再仅仅是知识的传授者,还要确定“以人为本”的观念,把课堂教学看作自己也是学生人生中的一段激荡的生命经历,鼓励、激发学生去不断探索,把学生的“发现”与“创造”视为最有价值的劳动成果,教师与学生平等地对话,与他们共同感悟思潮的跌宕涌动。我想从三个方面谈谈自己在教学时的'一些认识:

  一、联系生活、感知数学

  “数学课程不仅要考虑数学自身的特点,而且应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型进行解释与应用的过程。”这就要求我们遵循学生的思维规律,在实际问题和数学模型之间架起一座桥梁,让学生在不知不觉中走进数学、感知数学。数学来源于生活并服务于生活,主体(学生)在思考问题时,既符合自身的认知规律,又有直觉洞察、直观猜想、合理归纳与活动思维过程,有利于提高自己对数学的认识。

  二、身临其境,探索规律

  “数学教学活动必须建立在学生的认识发展水平和已有的知识经验上,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会。

  在教学时教师应根据知识的内在结构和学生的学习规律,提供现象和问题,创设思维情境,引导学生主动参与,进行观察、思考、探索。这样有利于激发学生解决问题的热情,提升学生的学习水平。比如在探究一元二次方程的根与系数的关系时,我们可以按下列步骤来创设情境。

  1.求三个一元二次方程的两根之和与两根之积。一般来说学生都是先把方程的根求出来,然后计算,学生可能体会不到什么,此时课堂气氛比较平稳。

  2.求一元二次方程的两根之和与两根之积,这时很多学生会感到很繁,怕动手计算,课堂出现沉闷现象。此时教师立即口答出答案,学生就会感觉到很惊奇,为之一振,进而产生疑问:“老师怎么会看出答案?这里会不会有规律?”课堂出现窃窃私语,激活了学生的思维,活跃了课堂气氛。

  3.提出问题:你能根据你开始的计算和老师的结论观察出一元二次方程的根与系数之间的关系吗?学生们跃跃欲试,开始投入到观察、思考、探索中去。

  4.提出问题:你敢肯定你所猜测到的结论是正确的吗?再一次激发学生的斗志,使他们敢于说理、敢于证明,给予他们充分展示自己才华的机会。

  三、由点到面,触类旁通

  复习不是简单的知识重复,而是一个再认识、再提高的过程,复习中的最大矛盾是时间短、内容多、要求高。复习既要做到突出重点、抓住典型,又能在高度概括中深刻揭示知识的内在联系,让学生在掌握规律中理解、记忆、熟练、提高。比如在复习一元二次方程根的判别式和根与系数的关系时,可以把一元二次方程根的判别式、根与系数的关系和二次函数的有关知识相联系,根的判别式可以作为判别二次函数的图像与x轴的交点个数的依据:当△>0时,抛物线与x轴有两个不同的交点;当△<0时,抛物线与x轴没有交点;当△=0时,抛物线与x轴只有一个交点即顶点。如果抛物线与x轴有两个不同的交点,用根与系数的关系可以求抛物线与x轴的两个交点之间的距离,可以判别抛物线与x轴交点的位置(交点是在坐标原点的左边还是在坐标原点的右边)等等。这样在复习过程中把知识拓一拓、伸一伸,能激起学生思维的火花、学习的积极性,培养学生运用知识提高分析问题和解决问题的能力。

  总之,课堂教学面对的是独立、有个性、有思维的学生,课堂教学设计应适应学生的发展,应随“学情”的变化而变化。课堂教学设计的成效如何,完全取决于教师对教材的理解、对学生情况的了解。只有教师具备“以学生为本”的教学理念,才能一切从学生实际出发、一切为学生考虑,才能真正做到教学服务于学生,实现“不同的人在数学上得到不同的发展”。

【初中数学课堂教学设计 】相关文章:

小学数学课堂教学设计02-04

初中数学高效课堂教学反思11-08

初中数学课堂教学反思02-10

初中数学教学设计04-10

(优)初中数学教学设计05-21

初中数学优秀教学设计02-17

初中数学教学设计精选15篇03-05

初中数学教学设计(精选15篇)05-23

初中数学微课教学设计01-07