关于高中数学说课稿范文集合10篇
作为一名老师,有必要进行细致的说课稿准备工作,借助说课稿可以提高教学质量,取得良好的教学效果。说课稿应该怎么写才好呢?以下是小编为大家整理的高中数学说课稿10篇,欢迎大家分享。
高中数学说课稿 篇1
各位老师:
大家好!我叫***,来自**。我说课的题目是《概率的基本性质》,内容选自于高中教材新课程人教A版必修3第三章第一节,课时安排为三个课时,本节课内容为第三课时。下面我将从教材分析、教学目标分析、教法分析、教学过程分析四大方面来阐述我对这节课的分析和设计:
一、教材分析
1、教材所处的地位和作用
本节课主要包含了两部分内容:一是事件的关系与运算,二是概率的基本性质,多以基本概念和性质为主。它是本册第二章统计的延伸,又是后面"古典概型"及"几何概型"的基础。在整个教学中起到承上启下的作用。同时也是新课改以来考查的热点之一。
2、教学的重点和难点
重点:概率的加法公式及其应用;事件的关系与运算。
难点:互斥事件与对立事件的区别与联系
二、教学目标分析
1.知识与技能目标
⑴了解随机事件间的基本关系与运算;
⑵掌握概率的几个基本性质,并会用其解决简单的概率问题。
2、过程与方法:
⑴通过观察、类比、归纳培养学生运用数学知识的综合能力;
⑵通过学生自主探究,合作探究培养学生的动手探索的能力。
3、情感态度与价值观:
通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣。
三、教法分析
采用实验观察、质疑启发、类比联想、探究归纳的教学方法。
四、教学过程分析
1、创设情境,引入新课
在掷骰子的试验中,我们可以定义许多事件,如:
c1=﹛出现的点数=1﹜,c2=﹛出现的点数=2﹜
c3=﹛出现的点数=3﹜,c4=﹛出现的点数=4﹜
c5=﹛出现的点数=5﹜,c6=﹛出现的点数=6﹜
D1=﹛出现的点数不大于1﹜D2=﹛出现的点数大于3﹜
D3=﹛出现的点数小于5﹜,E=﹛出现的点数小于7﹜
f=﹛出现的点数大于6﹜,G=﹛出现的点数为偶数﹜
H=﹛出现的点数为奇数﹜
⑴以引入例中的事件c1和事件H,事件c1和事件D1为例讲授事件之的包含关系和相等关系。
⑵从以上两个关系学生不难发现事件间的关系与集合间的关系相类似。进而引导学生思考,是否可以把事件和集合对应起来。
「设计意图」引出我们接下来要学习的主要内容:事件之间的关系与运算
2、探究新知
㈠事件的关系与运算
⑴经过上面的思考,我们得出:
试验的可能结果的全体←→全集
↓↓
每一个事件←→子集
这样我们就把事件和集合对应起来了,用已有的集合间关系来分析事件间的.关系。
集合的并→两事件的并事件(和事件)
集合的交→两事件的交事件(积事件)
在此过程中要注意帮助学生区分集合关系与事件关系之间的不同。
(例如:两集合A∪B,表示此集合中的任意元素或者属于集合A或者属于集合B;而两事件A和B的并事件A∪B发生,表示或者事件A发生,或者事件B发生。)
「设计意图」为更好地理解互斥事件和对立事件打下基础,
⑵思考:①若只掷一次骰子,则事件c1和事件c2有可能同时发生么?
②在掷骰子实验中事件G和事件H是否一定有一个会发生?
「设计意图」这两道思考题都很容易得到答案,主要目的是为引出接下来将要学习的互斥事件和对立事件,让学生从实际案例中体验它们各自的特征以及它们之间的区别与联系。
⑶总结出互斥事件和对立事件的概念,并通过多媒体的图形演示使学生们能更好地理解它们的特征以及它们之间的区别与联系。
⑷练习:通过多媒体显示两道练习,目的是让学生们能够及时巩固对互斥事件和对立事件的学习,加深理解。
㈡概率的基本性质:
⑴回顾:频率=频数/试验的次数
我们知道当试验次数足够大时,用频率来估计概率,由于频率在0~1之间,所以,可以得到概率的基本性质、
(通过对频率的理解并结合前面投硬币的实验来总结出概率的基本性质,师生共同交流得出结果)
3、典型例题探究
例1一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?
事件A:命中环数大于7环;事件B:命中环数为10环;
事件c:命中环数小于6环;事件D:命中环数为6、7、8、9、10环、
分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚
例2如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是1/4,取到方块(事件B)的概率是1/4,问:
(1)取到红色牌(事件c)的概率是多少?
(2)取到黑色牌(事件D)的概率是多少?
分析:事件c是事件A与事件B的并,且A与B互斥,因此可用互斥事件的概率和公式求解;事件c与事件D是对立事件,因此P(D)=1—P(c).
「设计意图」通过这两道例题,进一步巩固学生对本节课知识的掌握,并将所学知识应用到实际解决问题中去。
4、课堂小结
⑴理解事件的关系和运算
⑵掌握概率的基本性质
「设计意图」小结是引导学生对问题进行回味与深化,使知识成为系统。让学生尝试小结,提高学生的总结能力和语言表达能力。教师补充帮助学生全面地理解,掌握新知识。
5、布置作业
习题3、1A1、3、4
「设计意图」课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。
五、板书设计
概率的基本性质
一、事件间的关系和运算
二、概率的基本性质
三、例1的板书区
例2的板书区
四、规律性质总结
高中数学说课稿 篇2
【一】教学背景分析
1。教材结构分析
《圆的方程》安排在高中数学第二册(上)第七章第六节。圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用。圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用。
2。学情分析
圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的。但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难。另外学生在探究问题的能力,合作交流的意识等方面有待加强。
根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:
3。教学目标
(1) 知识目标:①掌握圆的标准方程;
②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;
③利用圆的标准方程解决简单的实际问题。
(2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;
②加深对数形结合思想的理解和加强对待定系数法的运用;
③增强学生用数学的意识。
(3) 情感目标:①培养学生主动探究知识、合作交流的意识;
②在体验数学美的过程中激发学生的学习兴趣。
根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:
4。 教学重点与难点
(1)重点:圆的标准方程的求法及其应用。
(2)难点: ①会根据不同的已知条件求圆的标准方程;
②选择恰当的坐标系解决与圆有关的实际问题。
为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:
好学教育:
【二】教法学法分析
1。教法分析 为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上。另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程。
2。学法分析 通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解。通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆。通过应用圆的标准方程,熟悉用待定系数法求的过程。 下面我就对具体的教学过程和设计加以说明:
【三】教学过程与设计
整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:
创设情境 启迪思维 深入探究 获得新知 应用举例 巩固提高
反馈训练 形成方法 小结反思 拓展引申
下面我从纵横两方面叙述我的教学程序与设计意图。
首先:纵向叙述教学过程
(一)创设情境——启迪思维
问题一 已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。7m,高为3m的货车能不能驶入这个隧道?
通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决。一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题。用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望。这样获取的知识,不但易于保持,而且易于迁移。
通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节。
(二)深入探究——获得新知
问题二 1。根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?
2。如果圆心在,半径为时又如何呢?
好学教育:
这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程。然后再让学生对圆心不在原点的情况进行探究。我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法。
得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节。
(三)应用举例——巩固提高
I。直接应用 内化新知
问题三 1。写出下列各圆的标准方程:
(1)圆心在原点,半径为3;
(2)经过点,圆心在点。
2。写出圆的圆心坐标和半径。
我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的.切线问题作准备。
II。灵活应用 提升能力
问题四 1。求以点为圆心,并且和直线相切的圆的方程。
2。求过点,圆心在直线上且与轴相切的圆的方程。
3。已知圆的方程为,求过圆上一点的切线方程。
你能归纳出具有一般性的结论吗?
已知圆的方程是,经过圆上一点的切线的方程是什么?
我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程。第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆。第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间。最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮。
III。实际应用 回归自然
问题五 如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0。01m)。
好学教育:
我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识。
(四)反馈训练——形成方法
问题六 1。求过原点和点,且圆心在直线上的圆的标准方程。
2。求圆过点的切线方程。
3。求圆过点的切线方程。
接下来是第四环节——反馈训练。这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心。另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果。
(五)小结反思——拓展引申
1。课堂小结
把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法 ①圆心为,半径为r 的圆的标准方程为:
圆心在原点时,半径为r 的圆的标准方程为:。
②已知圆的方程是,经过圆上一点的切线的方程是:。
2。分层作业
(A)巩固型作业:教材P81—82:(习题7。6)1,2,4。(B)思维拓展型作业:试推导过圆上一点的切线方程。
3。激发新疑
问题七 1。把圆的标准方程展开后是什么形式?
2。方程表示什么图形?
在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了。在知识的拓展中再次掀起学生探究的热情。另外它为下节课研究圆的一般方程作了重要的准备。
以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计: 横向阐述教学设计
(一)突出重点 抓住关键 突破难点
好学教育:
求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点。
第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心。最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五。这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破。
(二)学生主体 教师主导 探究主线
本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终。从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务。
(三)培养思维 提升能力 激励创新
为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行。
以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变。最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”。
高中数学说课稿 篇3
一、教材分析
1、教学内容
本节课内容教材共分两课时进行,这是第一课时,该课时主要学习函数的单调性的的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性。
2、教材的地位和作用
函数单调性是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。
3、教材的重点﹑难点﹑关键
教学重点:函数单调性的概念和判断某些函数单调性的方法。明确单调性是一个局部概念。
教学难点:领会函数单调性的实质与应用,明确单调性是一个局部的概念。
教学关键:从学生的学习心理和认知结构出发,讲清楚概念的形成过程、
4、学情分析
高一学生正处于以感性思维为主的年龄阶段,而且思维逐步地从感性思维过渡到理性思维,并由此向逻辑思维发展,但学生思维不成熟、不严密、意志力薄弱,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。从学生的认知结构来看,他们只能根据函数的图象观察出“随着自变量的增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性,发挥好多媒体教学的优势;由于学生在概念的掌握上缺少系统性、严谨性,在教学中注意加强。
二、目标分析
(一)知识目标:
1、知识目标:理解函数单调性的概念,掌握判断一些简单函数的单调性的方法;了解函数单调区间的概念,并能根据函数图象说出函数的单调区间。
2、能力目标:通过证明函数的单调性的学习,使学生体验和理解从特殊到一般的数学归纳推理思维方式,培养学生的观察能力,分析归纳能力,领会数学的归纳转化的思想方法,增加学生的知识联系,增强学生对知识的主动构建的能力。
3、情感目标:让学生积极参与观察、分析、探索等课堂教学的双边活动,在掌握知识的过程中体会成功的喜悦,以此激发求知欲望。领会用运动变化的观点去观察分析事物的方法。通过渗透数形结合的数学思想,对学生进行辨证唯物主义的思想教育。
(二)过程与方法
培养学生严密的逻辑思维能力以及用运动变化、数形结合、分类讨论的方法去分析和处理问题,以提高学生的思维品质,通过函数的单调性的学习,掌握自变量和因变量的关系。通过多媒体手段激发学生学习兴趣,培养学生发现问题、分析问题和解题的逻辑推理能力。
三、教法与学法
1、教学方法
在教学中,要注重展开探索过程,充分利用好函数图象的直观性、发挥多媒体教学的优势。本节课采用问答式教学法、探究式教学法进行教学,教师在课堂中只起着主导作用,让学生在教师的提问中自觉的发现新知,探究新知,并且加入激励性的语言以提高学生的积极性,提高学生参与知识形成的全过程。
2、学习方法
自我探索、自我思考总结、归纳,自我感悟,合作交流,成为本节课学生学习的主要方式。
四、过程分析
本节课的教学过程包括:问题情景,函数单调性的定义引入,增函数、减函数的定义,例题分析与巩固练习,回顾总结和课外作业六个板块。这里分别就其过程和设计意图作一一分析。
(一)问题情景:
为了激发学生的学习兴趣,本节课借助多媒体设计了多个生活背景问题,并就图表和图象所提供的信息,提出一系列问题和学生交流,激发学生的学习兴趣和求知欲望,为学习函数的单调性做好铺垫。(祥见课件)
新课程理念认为:情境应贯穿课堂教学的始终。本节课所创设的生活情境,让学生亲近数学,感受到数学就在他们的周围,强化学生的感性认识,从而达到学生对数学的理解。让学生在课堂的一开始就感受到数学就在我们身边,让学生学会用数学的眼光去关注生活。
(二)函数单调性的定义引入
1、几何画板动画演示,请学生认真观察,并回答问题:通过学生已学过的函数y=2x+4,,的图象的动态形式形象出x、y间的变化关系,使学生对函数单调性有感性认识。,进行比较,分析其变化趋势。并探讨、回答以下问题:
问题1、观察下列函数图象,从左向右看图象的变化趋势?
问题2:你能明确说出“图象呈上升趋势”的意思吗?
通过学生的交流、探讨、总结,得到单调性的“通俗定义”:
从在某一区间内当x的值增大时,函数值y也增大,到图象在该区间内呈上升趋势再到如何用x与f(x)来描述上升的图象?
通过问题逐步向抽象的定义靠拢,将图形语言转化为数学符号语言。几何画板的灵活使用,数形有机结合,引导学生从图形语言到数学符号语言的翻译变得轻松。
设计意图:
①通过学生熟悉的知识引入新课题,有利于激发学生的学习兴趣和学习热情,同时也可以培养学生观察、猜想、归纳的思维能力和创新意识,增强学生自主学习、独立思考,由学会向会学的转化,形成良好的思维品质。
②通过学生已学过的一次y=2x+4,,的图象的动态形式形象地反映出x、y间的'变化关系,使学生对函数单调性有感性认识。
③从学生的原有认知结构入手,探讨单调性的概念,符合“最近发展区的理论”要求。
④从图形、直观认识入手,研究单调性的概念,其本身就是研究、学习数学的一种方法,符合新课程的理念。
(三)增函数、减函数的定义
在前面的基础上,让学生讨论归纳:如何使用数学语言来准确描述函数的单调性?在学生回答的基础上,给出增函数的概念,同时要求学生讨论概念中的关键词和注意点。
定义中的“当x1x2时,都有f(x1) 注意: (1)函数的单调性也叫函数的增减性; (2)注意区间上所取两点x1,x2的任意性; (3)函数的单调性是对某个区间而言的,它是一个局部概念。 让学生自已尝试写出减函数概念,由两名学生板演。提出单调区间的概念。 设计意图:通过给出函数单调性的严格定义,目的是为了让学生更准确地把握概念,理解函数的单调性其实也叫做函数的增减性,它是对某个区间而言的,它是一个局部概念,同时明确判定函数在某个区间上的单调性的一般步骤。这样处 理,同时也是让学生感悟、体验学习数学感念的方法,提高其个性品质。 (四)例题分析 在理解概念的基础上,让学生总结判别函数单调性的方法:图象法和定义法。 2、例2、证明函数在区间(—∞,+∞)上是减函数。 在本题的解决过程中,要求学生对照定义进行分析,明确本题要解决什么?定义要求是什么?怎样去思考?通过自己的解决,总结证明单调性问题的一般方法。 变式一:函数f(x)=—3x+b在R上是减函数吗?为什么? 变式二:函数f(x)=kx+b(k<0)在R上是减函数吗?你能用几种方法来判断。 变式三:函数f(x)=kx+b(k<0)在R上是减函数吗?你能用几种方法来判断。 错误:实质上并没有证明,而是使用了所要证明的结论 例题设计意图:在理解概念的基础上,让学生总结判别函数单调性的方法:图象法和定义法。例1是教材中例题,它的解决强化学生应用数形结合的思想方法解题的意识,进一步加深对概念的理解,同时也是依托具体问题,对单调区间这一概念的再认识;要了解函数在某一区间上是否具有单调性,从图上进行观察是一种常用而又粗略的方法。严格地说,它需要根据单调函数的定义进行证明。例2是教材练习题改编,通过师生共同总结,得出使用定义证明的一般步骤:任取—作差(变形)—定号—下结论,通过例2的解决是学生初步掌握运用概念进行简单论证的基本方法,强化证题的规范性训练,从而提高学生的推理论证能力。例3是教材例2抽象出的数学问题。目的是进一步强化解题的规范性,提高逻辑推理能力,同时让学生学会一些常见的变形方法。 (五)巩固与探究 1、教材p36练习2,3 2、探究:二次函数的单调性有什么规律? (几何画板演示,学生探究)本问题作为机动题。时间不允许时,就为课后思考题。 设计意图:通过观察图象,对函数是否具有某种性质作出一种猜想,然后通过推理的办法,证明这种猜想的正确性,是发现和解决问题的一种常用数学方法。 通过课堂练习加深学生对概念的理解,进一步熟悉证明或判断函数单调性的方法和步骤,达到巩固,消化新知的目的。同时强化解题步骤,形成并提高解题能力。对练习的思考,让学生学会反思、学会总结。 (六)回顾总结 通过师生互动,回顾本节课的概念、方法。本节课我们学习了函数单调性的知识,同学们要切记:单调性是对某个区间而言的,同时在理解定义的基础上,要掌握证明函数单调性的方法步骤,正确进行判断和证明。 设计意图:通过小结突出本节课的重点,并让学生对所学知识的结构有一个清晰的认识,学会一些解决问题的思想与方法,体会数学的和谐美。 (七)课外作业 1、教材p43习题1。3A组1(单调区间),2(证明单调性); 2、判断并证明函数在上的单调性。 3、数学日记:谈谈你本节课中的收获或者困惑,整理你认为本节课中的最重要的知识和方法。 设计意图:通过作业1、2进一步巩固本节课所学的增、减函数的概念,强化基本技能训练和解题规范化的训练,并且以此作为学生对本结内容各项目标落实的评价。新课标要求:不同的学生学习不同的数学,在数学上获得不同的发展。作业3这种新型的作业形式是其很好的体现。 (七)板书设计(见ppt) 五、评价分析 有效的概念教学是建立在学生已有知识结构基础上,,因此在教学设计过程中注意了: 第一、教要按照学的法子来教; 第二、在学生已有知识结构和新概念间寻找“最近发展区”; 第三、强化了重探究、重交流、重过程的课改理念。让学生经历“创设情境——探究概念——注重反思——拓展应用——归纳总结”的活动过程,体验了参与数学知识的发生、发展过程,培养“用数学”的意识和能力,成为积极主动的建构者。 本节课围绕教学重点,针对教学目标,以多媒体技术为依托,展现知识的发生和形成过程,使学生始终处于问题探索研究状态之中,激情引趣,并注重数学科学研究方法的学习,是顺应新课改要求的,是研究性教学的一次有益尝试。 1、教学目标: 一、借助单位圆理解任意角的三角函数的定义。 二、根据三角函数的定义,能够判断三角函数值的符号。 三、通过学生积极参与知识的"发现"与"形成"的过程,培养合情猜测的能力,从中感悟数学概念的严谨性与科学性。 四、让学生在任意角三角函数概念的形成过程中,体会函数思想,体会数形结合思想。 2、教学重点与难点: 重点:任意角的正弦、余弦、正切的定义;三角函数值的符号。 难点:任意角的三角函数概念的建构过程。 授课过程: 一、引入 在我们的现实世界中的许多运动变化都有循环往复、周而复始的现象,这种变化规律称为周期性。如何用数学的方法来刻画这种变化?从这节课开始,我们要来学习刻画这种规律的数学模型之一――三角函数。 二、创设情境 三角函数是与角有关的函数,在学习任意角概念时,我们知道在直角坐标系中研究角,可以给学习带来许多方便,比如我们可以根据角终边的位置把它们进行归类,现在大家考虑:若在直角坐标系中来研究锐角,则锐角三角函数又可怎样定义呢? 学生情况估计:学生可能会提出两种定义的方式,一种定义为边之比,另一种定义在比值中引入了终边上的一点P的坐标。 问题: 1、锐角三角函数能否表示成第二种比值方式? 2、点P能否取在终边上的其它位置?为什么? 3、点P在哪个位置,比值会更简洁?(引出单位圆的定义)。指出sina=mP的函数依旧表示一个比值,不过其分母为1而已。 练习:计算的各三角函数值。 三、任意角的三角函数的定义 角的概念已经推广道了任意角,那么三角函数的`定义在任意角的范围里改怎么定义呢? 尝试:根据锐角三角函数的定义,你能尝试着给出任意角三角函数的定义吗? 评价学生给出的定义。给出任意角三角函数的定义。 四、解析任意角三角函数的定义 三角函数首先是函数。你能从函数观点解析三角函数吗?(定义域) 对于确定的角a,上面三个函数值都是唯一确定的,所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数。由于角的集合和实数集之间可以建立一一对应的关系,三角函数可以看成是自变量为实数的函数。 五、三角函数的应用。 1、已知角,求a的三角函数值。 2、已知角a终边上的一点P(-3,-4),求各三角函数值。 以上两道书上的例题,让学生自习看书,学生看书的同时,老师提出问题: 1、已知角如何求三角函数值? 2、利用角a的终边上任意一点的坐标也可以定义三角函数,你能给出这种定义吗?(这种定义与课本中给出的定义各有什么特点?) 3、变式:已知角a终边上点P(-3b,-4b),(b0),求角a的各三角函数值。 4、探究:三角函数的值在各象限的符号。 六、小结及作业 教案设计说明: 新教材的教学理念之一是让学生去体验新知识的发生过程,这节《任意角三角函数》的教案,主要围绕这一点来设计。 首先,角的概念推广了,那么锐角三角函数的定义是否也该推广到任意角的三角函数的定义呢?通过这个问题,让学生体会到新知识的发生是可能的,自然的。 其次,到底应该怎样去合理定义任意角的三角函数呢?让学生提出自己的想法,同时让学生去辨证这个想法是否是科学的?因为一个概念是严谨的,科学的,不能随心所欲地编造,必须去论证它的合理性,至少这种概念不能和锐角三角函数的定义有所冲突。在这个立-破的过程中,让学生去体验一个新的数学概念可能是如何形成,在形成的过程中可以从哪些角度加以科学的辩思。这样也有助于学生对任意角三角函数概念的理解。 再次,让学生充分体会在任意角三角函数定义的推广中,是如何将直角三角形这个"形"的问题,转换到直角坐标系下点的坐标这个"数"的过程的。培养数形结合的思想。 说课内容:普通高中课程标准实验教科书(人教A版)《数学必修4》第二章第四节“平面向量的数量积”的第一课时---平面向量数量积的物理背景及其含义。 下面,我从背景分析、教学目标设计、课堂结构设计、教学过程设计、教学媒体设计及教学评价设计六个方面对本节课的思考进行说明。 一、 背景分析 1、学习任务分析 平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,在数学、物理等学科中应用十分广泛。本节内容教材共安排两课时,其中第一课时主要研究数量积的概念,第二课时主要研究数量积的坐标运算,本节课是第一课时。 本节课的主要学习任务是通过物理中“功”的事例抽象出平面向量数量积的概念,在此基础上探究数量积的性质与运算律,使学生体会类比的思想方法,进一步培养学生的抽象概括和推理论证的能力。其中数量积的概念既是对物理背景的抽象,又是研究性质和运算律的基础。同时也因为在这个概念中,既有长度又有角度,既有形又有数,是代数、几何与三角的最佳结合点,不仅应用广泛,而且很好的体现了数形结合的数学思想,使得数量积的概念成为本节课的核心概念,自然也是本节课教学的重点。 2、学生情况分析 学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再从概念出发,在与实数运算类比的基础上研究性质和运算律。这为学生学习数量积做了很好的铺垫,使学生倍感亲切。但也正是这些干扰了学生对数量积概念的理解,一方面,相对于线性运算而言,数量积的结果发生了本质的变化,两个有形有数的向量经过数量积运算后,形却消失了,学生对这一点是很难接受的;另一方面,由于受实数乘法运算的影响,也会造成学生对数量积理解上的偏差,特别是对性质和运算律的理解。因而本节课教学的难点数量积的概念。 二、 教学目标设计 《普通高中数学课程标准(实验)》 对本节课的要求有以下三条: (1)通过物理中“功”等事例,理解平面向量数量积的含义及其物理意义。 (2)体会平面向量的数量积与向量投影的关系。 (3)能用运数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。 从以上的背景分析可以看出,数量积的概念既是本节课的重点,也是难点。为了突破这一难点,首先无论是在概念的引入还是应用过程中,物理中“功”的实例都发挥了重要作用。其次,作为数量积概念延伸的性质和运算律,不仅能够使学生更加全面深刻地理解概念,同时也是进行相关计算和判断的理论依据。最后,无论是数量积的性质还是运算律,都希望学生在类比的基础上,通过主动探究来发现,因而对培养学生的抽象概括能力、推理论证能力和类比思想都无疑是很好的载体。 综上所述,结合“课标”要求和学生实际,我将本节课的教学目标定为: 1、了解平面向量数量积的物理背景,理解数量积的含义及其物理意义; 2、体会平面向量的数量积与向量投影的关系,掌握数量积的性质和运算律, 并能运用性质和运算律进行相关的运算和判断; 3、体会类比的数学思想和方法,进一步培养学生抽象概括、推理论证的能力。 三、课堂结构设计 本节课从总体上讲是一节概念教学,依据数学课程改革应关注知识的发生和发展过程的理念,结合本节课的知识的逻辑关系,我按照以下顺序安排本节课的教学: 即先从数学和物理两个角度创设问题情景,通过归纳和抽象得到数量积的概念,在此基础上研究数量积的性质和运算律,使学生进一步加深对概念的理解,然后通过例题和练习使学生巩固概念,加深印象,最后通过课堂小结提高学生认识,形成知识体系。 四、 教学媒体设计 和“大纲”教材相比,“课标”教材在本节课的内容安排上,虽然将向量的夹角在“平面向量基本定理”一节提前做了介绍,但却将原来分两节课完成的内容合并成一节,相比较而言本节课的教学任务加重了许多。为了保证教学任务的完成,顺利实现本节课的教学目标,考虑到本节课的实际特点,在教学媒体的使用上,我的设想主要有以下两点: 1、制作高效实用的电脑多媒体课件,主要作用是改变相关内容的呈现方式,以此来节约课时,增加课堂容量。 2、设计科学合理的板书(见下),一方面使学生加深对主要知识的印象,另一方面使学生清楚本节内容知识间的逻辑关系,形成知识网络。 平面向量数量积的物理背景及其含义 一、 数量积的概念 二、数量积的性质 四、应用与提高 1、 概念: 例1: 2、 概念强调 (1)记法 例2: (2)“规定” 三、数量积的运算律 例3: 3、几何意义: 4、物理意义: 五、 教学过程设计 课标指出:数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下六个活动: 活动一:创设问题情景,激发学习兴趣 正如教材主编寄语所言,数学是自然的,而不是强加于人的。平面向量的数量积这一重要概念,和向量的.线性运算一样,也有其数学背景和物理背景,为了体现这一点,我设计以下几个问题: 问题1:我们已经研究了向量的哪些运算?这些运算的结果是什么? 问题2:我们是怎么引入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的? 期望学生回答:物理模型→概念→性质→运算律→应用 问题3:如图所示,一物体在力F的作用下产生位移S, (1)力F所做的功W= 。 (2)请同学们分析这个公式的特点: W(功)是 量, F(力)是 量, S(位移)是 量, α是 。 问题1的设计意图在于使学生了解数量积的数学背景,让学生明白本节课所要研究的数量积与向量的加法、减法及数乘一样,都是向量的运算,但与向量的线性运算相比,数量积运算又有其特殊性,那就是其结果发生了本质的变化。 问题2的设计意图在于使学生在与向量加法类比的基础上明了本节课的研究方法和顺序,为教学活动指明方向。 问题3的设计意图在于使学生了解数量积的物理背景,让学生知道,我们研究数量积绝不仅仅是为了数学自身的完善,而是有其客观背景和现实意义的,从而产生了进一步研究这种新运算的愿望。同时,也为抽象数量积的概念做好铺垫。 活动二:探究数量积的概念 1、概念的抽象 在分析“功”的计算公式的基础上提出问题4 问题4:你能用文字语言来表述功的计算公式吗?如果我们将公式中的力与位移推广到一般向量,其结果又该如何表述? 学生通过思考不难回答:功是力与位移的大小及其夹角余弦的乘积;两个向量的大小及其夹角余弦的乘积。这样,学生事实上已经得到数量积概念的文字表述了,在此基础上,我进一步明晰数量积的概念。 2、概念的明晰 已知两个非零向量 与 ,它们的夹角为 ,我们把数量 ︱ ︱·︱ ︱cos 叫做 与 的数量积(或内积),记作: · ,即: · = ︱ ︱·︱ ︱cos 在强调记法和“规定”后 ,为了让学生进一步认识这一概念,提出问题5 问题5:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?并完成下表: 角 的范围0°≤ <90° =90°0°< ≤180° · 的符号 通过此环节不仅使学生认识到数量积的结果与线性运算的结果有着本质的不同,而且认识到向量的夹角是决定数量积结果的重要因素,为下面更好地理解数量积的性质和运算律做好铺垫。 3、探究数量积的几何意义 这个问题教材是这样安排的:在给出向量数量积的概念后,只介绍了向量投影的定义,直到讲完例1后,为了证明运算律的第三条才直接以结论的形式呈现给学生,我觉得这样安排似乎不太自然,还不如在给出向量投影的概念后,直接由学生自己归纳得出,所以做了调整。为此,我首先给出给出向量投影的概念,然后提出问题5。 如图,我们把│ │cos (│ │cos )叫做向量 在 方向上( 在 方向上)的投影,记做:OB1=│ │cos 问题6:数量积的几何意义是什么? 这样做不仅让学生从“形”的角度重新认识数量积的概念,从中体会数量积与向量投影的关系,同时也更符合知识的连贯性,而且也节约了课时。 4、研究数量积的物理意义 数量积的概念是由物理中功的概念引出的,学习了数量积的概念后,学生就会明白功的数学本质就是力与位移的数量积。为此,我设计以下问题 一方面使学生尝试计算数量积,另一方面使学生理解数量积的物理意义,同时也为数量积的性质埋下伏笔。 问题7: (1) 请同学们用一句话来概括功的数学本质:功是力与位移的数量积 。 (2)尝试练习:一物体质量是10千克,分别做以下运动: ①、在水平面上位移为10米; ②、竖直下降10米; ③、竖直向上提升10米; ④、沿倾角为30度的斜面向上运动10米; 分别求重力做的功。 活动三:探究数量积的运算性质 1、性质的发现 教材中关于数量积的三条性质是以探究的形式出现的,为了很好地完成这一探究活动,在完成上述练习后,我不失时机地提出问题8: (1)将尝试练习中的① ② ③的结论推广到一般向量,你能得到哪些结论? (2)比较︱ · ︱与︱ ︱×︱ ︱的大小,你有什么结论? 在学生讨论交流的基础上,教师进一步明晰数量积的性质,然后再由学生利用数量积的定义给予证明,完成探究活动。 2、明晰数量积的性质 3、性质的证明 这样设计体现了教师只是教学活动的引领者,而学生才是学习活动的主体,让学生成为学习的研究者,不断地体验到成功的喜悦,激发学生参与学习活动的热情,不仅使学生获得了知识,更培养了学生由特殊到一般的思维品质。 活动四:探究数量积的运算律 1、运算律的发现 关于运算律,教材仍然是以探究的形式出现,为此,首先提出问题9 问题9:我们学过了实数乘法的哪些运算律?这些运算律对向量是否也适用? 通过此问题主要是想使学生在类比的基础上,猜测提出数量积的运算律。 学生可能会提出以下猜测: ① · = · ②( · ) = ( · ) ③( + )· = · + · 猜测①的正确性是显而易见的。 关于猜测②的正确性,我提示学生思考下面的问题: 猜测②的左右两边的结果各是什么?它们一定相等吗? 学生通过讨论不难发现,猜测②是不正确的。 这时教师在肯定猜测③的基础上明晰数量积的运算律: 2、明晰数量积的运算律 3、证明运算律 学生独立证明运算律(2) 我把运算运算律(2)的证明交给学生完成,在证明时,学生可能只考虑到λ>0的情况,为了帮助学生完善证明,提出以下问题: 当λ<0时,向量 与λ , 与λ 的方向 的关系如何?此时,向量λ 与 及 与λ 的夹角与向量 与 的夹角相等吗? 师生共同证明运算律(3) 运算律(3)的证明对学生来说是比较困难的,为了节约课时,这个证明由师生共同完成,我想这也是教材的本意。 在这个环节中,我仍然是首先为学生创设情景,让学生在类比的基础上进行猜想归纳,然后教师明晰结论,最后再完成证明,这样做不仅培养了学生推理论证的能力,同时也增强了学生类比创新的意识,将知识的获得和能力的培养有机的结合在一起。 活动五:应用与提高 例1、(师生共同完成)已知︱ ︱=6,︱ ︱=4, 与 的夹角为60°,求 ( +2 )·( -3 ),并思考此运算过程类似于哪种运算? 例2、(学生独立完成)对任意向量 ,b是否有以下结论: (1)( + )2= 2+2 · + 2 (2)( + )·( - )= 2— 2 例3、(师生共同完成)已知︱ ︱=3,︱ ︱=4, 且 与 不共线,k为何值时,向量 +k 与 -k 互相垂直?并思考:通过本题你有什么收获? 本节教材共安排了四道例题,我根据学生实际选择了其中的三道,并对例1和例3增加了题后反思。例1是数量积的性质和运算律的综合应用,教学时,我重点从对运算原理的分析和运算过程的规范书写两个方面加强示范。完成计算后,进一步提出问题:此运算过程类似于哪种运算?目的是想让学生在类比多项式乘法的基础上自己猜测提出例2给出的两个公式,再由学生独立完成证明,一方面这并不困难,另一方面培养了学生通过类比这一思维模式达到创新的目的。例3的主要作用是,在继续巩固性质和运算律的同时,教给学生如何利用数量积来判断两个向量的垂直,是平面向量数量积的基本应用之一,教学时重点给学生分析数与形的转化原理。 为了使学生更好的理解数量积的含义,熟练掌握性质及运算律,并能够应用数量积解决有关问题,再安排如下练习: 1、 下列两个命题正确吗?为什么? ①、若 ≠0,则对任一非零向量 ,有 · ≠0. ②、若 ≠0, · = · ,则 = . 2、已知△ABC中, = , = ,当 · <0或 · =0时,试判断△ABC的形状。 安排练习1的主要目的是,使学生在与实数乘法比较的基础上全面认识数量积这一重要运算, 通过练习2使学生学会用数量积表示两个向量的夹角,进一步感受数量积的应用价值。 活动六:小结提升与作业布置 1、本节课我们学习的主要内容是什么? 2、平面向量数量积的两个基本应用是什么? 3、我们是按照怎样的思维模式进行概念的归纳和性质的探究?在运算律的探究过程中,渗透了哪些数学思想? 4、类比向量的线性运算,我们还应该怎样研究数量积? 通过上述问题,使学生不仅对本节课的知识、技能及方法有了更加全面深刻的认识,同时也为下 一节做好铺垫,继续激发学生的求知欲。 布置作业: 1、课本P121习题2.4A组1、2、3。 2、拓展与提高: 已知 与 都是非零向量,且 +3 与7 -5 垂直, -4 与 7 -2 垂直求 与 的夹角。 在这个环节中,我首先考虑检测全体学生是否都达到了“课标”的基本要求,因此安排了一组教材中的习题,目的是让所有的学生继续加深对数量积概念的理解和应用,为后续学习打好基础。其次,为了能让不同的学生在数学领域得到不同的发展,我又安排了一道有一定难度的问题供学有余力的同学选做。 六、教学评价设计 评价方式的转变是新课程改革的一大亮点,课标指出:相对于结果,过程更能反映每个学生的发展变化,体现出学生成长的历程。因此,数学学习的评价既要重视结果,也要重视过程。结合“课标”对数学学习的评价建议,对本节课的教学我主要通过以下几种方式进行: 1、 通过与学生的问答交流,发现其思维过程,在鼓励的基础上,纠正偏差,并对其进行定 性的评价。 2、在学生讨论、交流、协作时,教师通过观察,就个别或整体参与活动的态度和表现做出评价,以此来调动学生参与活动的积极性。 3、 通过练习来检验学生学习的效果,并在讲评中,肯定优点,指出不足。 4、 通过作业,反馈信息,再次对本节课做出评价,以便查漏补缺。 各位评委老师你们好,我是第?号选手。我今天说课的题目是《 》,我将从教材分析,教法,学法,教学程序,等几个方面进行我的说课。 一,教材分析 这部分我主要从3各方面阐述 1, 教材的地位和作用 《 》是北师大版必修?第?章第?节的内容,在此之前,同学们已经学习了、,这些对本节课的学习有一定的铺垫作用,同是学好本节的内容不仅加深前面所学习的知识,而且为后面我们将要学习的?知识打好基础,?所以说本节课的学习在整个高中数学学习过程中占有重要地位! 2.根据教学大纲的规定,教学内容的要求,教学对象的实情我确定了如下3维教学目标(i)知识目标: II能力目标;初步培养学生归纳,抽象,概括的思维能力。 训练学生认识问题,分析问题,解决问题的能力 III情感目标;通过学生的探索,史学生体会数学就在我们身边,让学生发现生活的数学,培养不断超越的创新品质,提高数学素养。 3, 结合以上分析以及高一学生的人知水平我确定啦本节课的重难点 教学重点: 教学难点; 二,教法 教学方法是完成教学任务的手段,恰当的学者教学方法至关重要,根据本节课的教学内容,考虑到高一学生已经初步具有一定的探索能力,并喜欢挑战问题的实际情况,为啦更有效的突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的知道思想。我主要采用 问题探究法 引导发现发,案例教学法,讲授法,在教学过程中精心设计带有启发性和思考性的问题,满足学生探索的欲望,培养学生的学习兴趣,激发来自学生主体最有利的动力。并运用多媒体课件的形式,更形象直观,提高教学效果的同时加大啦课堂密度! 学法 根据学生的年龄特征,运用讯息渐进,逐步升入,理论联系实际的规律,让学生从问题中质疑,尝试,归纳,总结,运用。培养学生发现问题,研究问题,分析问题的能力。自主参与知识的发生,发展,形成过程,完成从感性认识 到理性思维的质的飞跃,史学生在知识和能力方面都有所提高。 三,教学程序 1, 创设情境,提出问题 让学生产生强烈的问题意识,学生试着利用以前的知识经验,同化索引出当前学习的新知识,激发学习的兴趣和动机。 2, 引导探究,直奔主题。(揭示概念) 参用小组合作的方式,各小组派代表发表成果,教师作为教学的引导者,给予肯定的评价,并给出一定的指导,最后师生共同得出??!教师引导学生进一步学习。整个过程充分突出学生的主体地位,培养学生合作探究的能力,激发兴趣,更让学生在思考学术问题以及解决数学问题的思想方法上有更深的交流。 3, 自我尝试,初步应用 在讲解是,不仅在于怎样接,更在于为什么这样解,及时引导学生探究运用知识,解决问题的方法,及时对解题方法和规律进行概括,有利于培养学生的思维能力。 4 .当堂训练,巩固深化(反馈矫正) 通过学生的主体参与,让学生巩固所学的知识,实现对知识再认识的以及在数学解题思想方法层面上进一步升华 5,归纳小结,回顾反思 从知识,方法,经验等方面进行总结。让学生思考本节课学到啦那些知识,还有那些疑问。本节课最大的体验。本节课你学会那些技能。 知识性的内容小结,可以把课堂教学传授的知识尽快转化为学生的素养,数学思想发放的小结,可以使学生更深刻地理解数学思想发放在解题中的`地位和作用,并且逐步培养学生良好的个性品质目标。 ,6,变式延伸,布置作业 必做题,对本届课学生知识水平的反馈。选作题,对本节课知识内容的延伸。使不同层次学生都可以收获成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,让每个学生在原有的基础上有所发展。做到人人学数学,人人学不同的数学。 7板书设计 力图简洁,形象,直观,概括以便学生易于掌握。 四,教学评价 学生学习结果评价当然重要,但是学习过程的评价更加重要。本节课中高度重视学生学习过程中的参与度,自信心,团队精神,合作意识,独立思考习惯的养成。数学发现的能力,以及学习的兴趣和成就感,,学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多学生主动参与,师生对话可以实现师生合作,适度的研讨可以驻京生生交流,知识的生成和问题的解决可以让学生感受到成功的喜悦。缜密的思考可以培养学生独立思考的习惯,让学生在教室评价,学生评价以及自我评价的过程中体验知识的积累,探索能力的长进和思维品质的提高,为学生的可持续发展打下基础, 以上就是我的说课内容。不当之处,希望各位老师给予指正。谢谢各位评委老师!你们幸苦啦! 一、教材分析 1、教材的地位和作用: 函数是高中数学学习的重点和难点,函数的思想贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数及指数函数的图像和性质,同时也为今后研究对数函数及其性质打下坚实的基础。因此本节课内容十分重要,它对知识起着承上启下的作用。 2、教学的重点和难点: 根据这节课的内容特点及学生的实际情况,我将本节课教学重点定为指数函数的图像、性质及应用,难点定为指数函数性质的发现过程及指数函数与底的关系。 二、教学目标分析 基于对教材的理解和分析,我制定了以下教学目标: 1、理解指数函数的定义,掌握指数函数图像、性质及其简单应用。 2、通过教学培养学生观察、分析、归纳等思维能力,体会数形结合思想和分类讨论思想,增强学生识图用图的能力。 3、培养学生对知识的严谨科学态度和辩证唯物主义观点。 三、教法学法分析 1、学情分析 教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也逐步形成,但由于年龄的原因,思维尽管活跃敏捷,却缺乏冷静深刻。因此思考问题片面不严谨。 2、教法分析:基于以上学情分析,我采用先学生讨论,再教师讲授教学方法。一方面培养学生的观察、分析、归纳等思维能力。另一方面用教师的讲授来纠正由于学生思维过分活跃而走入的误区,和弥补知识的不足,达到能力与知识的双重效果。 3、学法分析 让学生仔细观察书中给出的实际例子,使他们发现指数函数与现实生活息息相关。再根据高一学生爱动脑懒动手的特点,让学生自己描点画图,画出指数函数的图像,继而用自己的语言总结指数函数的性质,学生经历了探究的过程,培养探究能力和抽象概括的能力。 四、教学过程 (一)创设情景 问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂 次后,得到的细胞分裂的个数 与 之间,构成一个函数关系,能写出 与 之间的函数关系式吗? 学生回答: 与 之间的关系式,可以表示为 。 问题2:折纸问题:让学生动手折纸 学生回答:①对折的次数 与所得的层数 之间的关系,得出结论 ②对折的次数 与折后面积 之间的关系(记折前纸张面积为1),得出结论 问题3:《庄子。天下篇》中写到“一尺之棰,日取其半,万世不竭”。 学生回答:写出取 次后,木棰的剩留量与 与 的函数关系式。 设计意图: (1)让学生在问题的情景中发现问题,遇到挑战,激发斗志,又引导学生在简单的具体问题中抽象出共性,体验从简单到复杂,从特殊到一般的认知规律。从而引入两种常见的指数函数① ② (2)让学生感受我们生活中存在这样的指数函数模型,便于学生接 受指数函数的形式。 (二)导入新课 引导学生观察,三个函数中,底数是常数,指数是自变量。 设计意图:充实实例,突出底数a的取值范围,让学生体会到数学来源于生产生活实际。函数 分别以 的数为底,加深对定义的感性认识,为顺利引出指数函数定义作铺垫。 (三)新课讲授 1.指数函数的定义 一般地,函数 叫做指数函数,其中 是自变量,函数的定义域是R。 含义: 设计意图:为 按两种情况得出指数函数性质作铺垫。若学生回答不合适,引导学生用区间表示: 问题:指数函数定义中,为什么规定“ ”如果不这样规定会出现什么情况? 设计意图:教师首先提出问题:为什么要规定底数大于0且不等于1呢?这是本节的一个难点,为突破难点,采取学生自由讨论的形式,达到互相启发,补充,活跃气氛,激发兴趣的目的。 对于底数的分类,可将问题分解为: (1)若 会有什么问题?(如 ,则在实数范围内相应的函数值不存在) (2)若 会有什么问题?(对于 , 都无意义) (3)若 又会怎么样?( 无论 取何值,它总是1,对它没有研究的必要.) 师:为了避免上述各种情况的发生,所以规定 。 在这里要注意生生之间、师生之间的对话。 设计意图:认识清楚底数a的特殊规定,才能深刻理解指数函数的定义域是R;并为学习对数函数,认识指数与对数函数关系打基础。 教师还要提醒学生指数函数的定义是形式定义,必须在形式上一模一样才行,然后把问题引向深入。 1:指出下列函数那些是指数函数: 2:若函数 是指数函数,则 3:已知 是指数函数,且 ,求函数 的解析式。 设计意图 :加深学生对指数函数定义和呈现形式的理解。 2.指数函数的图像及性质 在同一平面直角坐标系内画出下列指数函数的图象 画函数图象的步骤:列表、描点、连线 思考如何列表取值? 教师与学生共同作出 图像。 设计意图:在理解指数函数定义的基础上掌握指数函数的图像与性质,是本节的重点。关键在于弄清底数a对于函数值变化的影响。对于 时函数值变化的不同情况,学生往往容易混淆,这是教学中的一个难点。为此,必须利用图像,数形结合。教师亲自板演,学生亲自在课前准备好的坐标系里画图,而不是采用几何画板直接得到图像,目的是使学生更加信服,加深印象,并为以后画图解题,采用数形结合思想方法打下基础。 利用几何画板演示函数 的图象,观察分析图像的共同特征。由特殊到一般,得出指数函数 的图象特征,进一步得出图象性质: 教师组织学生结合图像讨论指数函数的性质。 设计意图:这是本节课的.重点和难点,要充分调动学生的积极性、主动性,发挥他们的潜能,尽量由学生自主得出性质,以便能够更深刻的记忆、更熟练的运用。 师生共同总结指数函数的性质,教师边总结边板书。 特别地,函数值的分布情况如下: 设计意图:再次强调指数函数的单调性与底数a的关系,并具体分析了函数值的分布情况,深刻理解指数函数值域情况。 (四)巩固与练习 例1: 比较下列各题中两值的大小 教师引导学生观察这些指数值的特征,思考比较大小的方法。 (1)(2)两题底相同,指数不同,(3)(4)两题可化为同底的,可以利用函数的单调性比较大小。 (5)题底不同,指数相同,可以利用函数的图像比较大小。 (6)题底不同,指数也不同,可以借助中介值比较大小。 例2:已知下列不等式 , 比较 的大小 : 设计意图:这是指数函数性质的简单应用,使学生在解题过程中加深对指数函数的图像及性质的理解和记忆。 (五)课堂小结 通过本节课的学习,你学到了哪些知识? 你又掌握了哪些数学思想方法? 你能将指数函数的学习与实际生活联系起来吗? 设计意图:让学生在小结中明确本节课的学习内容,强化本节课的学习重点,并为后续学习打下基础。 (六)布置作业 1、练习B组第2题;习题3-1A组第3题 2、A先生从今天开始每天给你10万元,而你承担如下任务:第一天给A先生1元,第二天给A先生2元,,第三天给A先生4元,第四天给A先生8元,依次下去,…,A先生要和你签定15天的合同,你同意吗?又A先生要和你签定30天的合同,你能签这个合同吗? 3、观察指数函数 的图象,比较 的大小。 一、教材分析 1.教材所处的地位和作用 本节课所学内容为算法案例3,主要学习如何给一组数据排序,学习作程序框图和设计程序,通过本节课的学习之后将能使许多复杂的问题在计算机上得到解决,减少工作量。 2 教学的重点和难点 重点:两种排序法的排序步骤及计算机程序设计 难点:排序法的计算机程序设计 二、教学目标分析 1.知识与技能目标: 掌握数据排序的原理能使用直接排序法与冒泡排序法给一组数据排序,进而能设计冒泡排序法的程序框图及程序,理解数学算法与计算机算法的区别,理解计算机对数学的辅助作用。 2.过程与方法目标: 能根据排序法中的直接插入排序法与冒泡排序法的步骤,了解数学计算转换为计算机计算的途径,从而探究计算机算法与数学算法的区别,体会计算机对数学学习的辅助作用。 3.情感,态度和价值观目标 通过对排序法的学习,领会数学计算与计算机计算的区别,充分认识信息技术对数学的'促进。 三、教学方法与手段分析 1.教学方法:充分发挥学生的主体作用和教师的主导作用,采用启发式,并遵循循序渐进的教学原则。这有利于学生掌握从现象到本质,从已知到未知逐步形成概念的学习方法,有利于发展学生抽象思维能力和逻辑推理能力。 2.教学手段:通过各种教学媒体(计算机)调动学生参与课堂教学的主动性与积极性。 四、学法分析 模仿排序法中数字排序的步骤,理解计算机计算的一般步骤,领会数学计算在计算机上实施的要求。 五、教学过程分析 一、创设情境 提出问题:大家考完试后如果要排一下成绩的话,单靠人手该怎样操作呢?如果我们用计算机里的软件电子表格对分数排序就非常简单,那么电子计算机是怎么对数据进行排序的呢? 通过这个问题,引出我们这节课所要学习的两种排序方法--直接插入排序法与冒泡排序法 二、探索新知 这里我先让学生们阅读课本P30-P31的内容,然后回答下面的问题: (1)排序法中的直接插入排序法与冒泡排序法的步骤有什么区别? (2)冒泡法排序中对5个数字进行排序最多需要多少趟? (3)在冒泡法排序对5个数字进行排序的每一趟中需要比较大小几次? 提出问题,然后让学生们作出回答,这样可以促使学生们能够积极思考,自主地去学习新的知识,而不只是单向的由老师向学生灌输。 三、知识应用 例1 用冒泡排序法对数据7,5,3,9,1从小到大进行排序 (根据刚刚提问所总结的方法完成解题步骤) 练习:写出用冒泡排序法对5个数据4,11,7,9,6排序的过程中每一趟排序的结果. (及时将学到的知识应用,有利于知识的掌握) 例2 设计冒泡排序法对5个数据进行排序的程序框图. (在之前所学习知识的基础上画出程序框图,然后给出一个思考题) 思考:直接插入排序法的程序框图如何设计?可否把上述程序框图转化为程序? (之后出一个练习题,找出思考题的答案) 练习:用直接插入排序法对例1中的数据从小到大排序,画出程序框图,并转化为程序运行求出最终答案。 (这里可以使学生们领会数学计算与计算机计算的区别,充分认识信息技术对数学的促进。) 四、课堂小结: (1)数字排序法中的常见的两种排序法直接插入排序法与冒泡排序法它们的排序步骤 (2两种排序法的计算机程序设计 (3)注意循环语句的使用与算法的循环次数,对算法进行改进。 通过小结使学生们对知识有一个系统的认识,突出重点,抓住关键,培养概括能力。 各位评委、各位老师:大家好! 我叫李长杉,来自甘肃省嘉峪关市第一中学。今天我说课的课题是《一元二次不等式的解法》(第一课时)。下面我将围绕本节课"教什么?"、"怎样教?"以及"为什么这样教?"三个问题,从教材内容分析、教法学法分析、教学过程分析和课堂意外预案等几个方面逐一加以分析和说明。 一。教材内容分析: 1.本节课内容在整个教材中的地位和作用。 概括地讲,本节课内容的地位体现在它的基础性,作用体现在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合知识的巩固和运用具有重要的作用,也与后面的函数、数列、三角函数、线形规划、直线与圆锥曲线以及导数等内容密切相关。许多问题的解决都会借助一元二次不等式的解法。因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用。 2.教学目标定位。 根据教学大纲要求、高考考试大纲说明、新课程标准精神、高一学生已有的知识储备状况和学生心理认知特征,我确定了四个层面的教学目标。第一层面是面向全体学生的知识目标:熟练掌握一元二次不等式的两种解法,正确理解一元二次方程、一元二次不等式和二次函数三者的关系。第二层面是能力目标,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力。第三层面是德育目标,通过对解不等式过程中等与不等对立统一关系的认识,向学生逐步渗透辨证唯物主义思想。第四层面是情感目标,在教师的启发引导下,学生自主探究,交流讨论,培养学生的合作意识和创新精神。 3.教学重点、难点确定。 本节课是在复习了一次不等式的解法之后,利用二次函数的图象研究一元二次不等式的解法。只要学生能够理解一元二次方程、一元二次不等式和二次函数三者的关系,并利用其关系解不等式即可。因此,我确定本节课的教学重点为一元二次不等式的解法,关键是一元二次方程、一元二次不等式和二次函数三者的关系。 二。教法学法分析: 数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,使学生在学习中培养坚强的意志品质、形成良好的道德情感。为了更好地体现课堂教学中"教师为主导,学生为主体"的教学关系和"以人为本,以学定教"的教学理念,在本节课的教学过程中,我将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动。我设计了①创设情景——引入新课,②交流探究——发现规律,③启发引导——形成结论,④练习小结——深化巩固,⑤思维拓展——提高能力,五个环环相扣、层层深入的教学环节,在教学中注意关注整个过程和全体学生,充分调动学生积极参与教学过程的每个环节。 三。教学过程分析: 1.创设情景——引入新课。我们常说"兴趣是最好的老师",长期以来,学生对学习数学缺乏兴趣,甚至失去信心,一个重要的原因,是老师在教学中不重视学生对学习的情感体验,教学应该充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习的'乐趣。根据教材内容的安排,我以学生熟悉的画一次函数图象、求一次方程和一次不等式的解为背景知识切入,设置一个练习题组,一方面让学生总结复习已有知识,为后面学习二次不等式的解法打下基础,做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验,然后以20xx年江苏省的一道高考试题为引子,引入本节课的新授内容。对于本题,引导学生,利用上面解练习题组1的方法,画出二次函数图象来解答。二次函数是初中数学的重要内容,本题又给出了函数图象上许多点,相信学生画出图象应该不成问题,只要教师适当点拨,学生不难得到正确答案。以高考试题为背景引入新课,可以提高学生兴趣,抓住学生眼球,吸引学生注意力,还可以让学生实实在在感受到,高考题就在我们的课本中,就在我们平常的练习中。 2.探究交流——发现规律。从特殊到一般是我们发现问题、寻求规律、揭示问题本质最常用的方法之一。我把课本例题1、2编为练习题组(一),交由学生用上面解高考题的方法——图象法去解,学生由于熟知二次函数图象,求解应该不会有太大的问题。在这个过程中,教师要启发引导学生注意对比两题的异同,组织引导学生展开交流讨论,探讨第(2)题能不能先把二次项系数化正以后再构造函数画图求解。然后达成共识,如果二次项系数为负数时,先做等价转化,把二次项系数化为正数再解,课本19页例3、例4作为题组(二),继续让学生用上面的图象法,由学生自己求解,这时我及时提示学生注意这两题与题组(一)中两题的不同(例1、例2对应方程都有两个不等实根,例3对应方程有两相等实根,例4对应方程无实根)。两个题组的练习之后,可以寻求解二次不等式的一般规律。 3.启发引导——形成结论。前面两个题组的四个小题,基本涵盖了一般一元二次不等式解的各种情况,进一步启发引导学生将特殊、具体题目的结论做一般化总结,与学生一起就 △>0,△<0,△=0 c="">0或ax2+bx+c<0 a="">0)的解的情况应该水到渠成。至此,学生可以感受到,解二次不等式只须①将二次项系数化为正数,②求解二次方程 ax2+bx+c=0 的根。③根据①后的二次不等式的符号写出解集即可,必要时也可以结合图象写解集。这样我们就得到了二次不等式的另外一种解法(可称为"三步曲"法)。 4.训练小结——巩固深化。为了巩固和加深二次不等式的两种解法,接下来及时组织学生进行课堂练习,完成课本21页练习1-4题。本环节请不同层次的学生在黑板上书写解题过程,之后师生共同纠正问题,规范解题过程的书写。 5.延伸拓宽——提高能力。课堂教学既要面向全体学生,又应关注学生的个体差异。体现分类推进,分层教学的原则。为此,我又设计了一个提高练习题组,共有三道备选题目,以供程度较好学有余力的学生能够更好的展示自己的解题能力,取得更进一步的提高。 四。课堂意外预案: 新课程理念下的教学更多的关注学生自主探究、关注学生的个性发展,鼓励学生勇于提出问题,培养学生思维的批评性。在课堂上学生往往会提出让老师感到"意外"的问题,我在平时的教学中重视对"课堂意外预案"的探索和思考,备课时尽量设想课堂中可能会出现的各种情况,做到有备无患,以免在课堂中学生提出让自己出乎意料的问题,使自己陷入被动尴尬境地。结合以往经验,在本节课,我提出两个"意外预案". 1.学生在做课本练习1(x+2)(x-3)>0 时,可能会问到转化为不等式组{ 或{ 求解对不对。学生提出的问题,想法非常好,应给予肯定和鼓励,这与下节简单分式不等式和高次不等式的解法有关,是解不等式的另一种解法——等价转化法,不在本节课之列。 2.根据以往的经验,在解(x-1)(x+2)>1一类的不等式的时候,由于受方程(x+1)(x+2)=0 可转化为x-1=0或x+2=0求解的影响,有可能会出现将不等式转化为不等式组{ 来求解的错误做法,教师要关注学生,及时发现问题并给予纠正,指出上面的转化不是等价转化。 以上是我对本节课的一些粗浅的认识和构想,如有不妥之处,恳请各位专家、各位同仁批评指正。谢谢大家! 一、教材地位与作用 本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理的知识非常重要。 二、学情分析 作为高一学生,同学们已经掌握了基本的三角函数,特别是在一些特殊三角形中,而学生们在解决任意三角形的边与角问题,就比较困难。 教学重点:正弦定理的内容,正弦定理的证明及基本应用。 教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。 根据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标 教学目标分析: 知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。 能力目标:探索正弦定理的证明过程,用归纳法得出结论。 情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。 三、教法学法分析 教法:采用探究式课堂教学模式,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。 学法:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,动手尝试相结合,增强学生由特殊到一般的数学思维能力,锲而不舍的求学精神。 四、教学过程 (一)创设情境,布疑激趣 “兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。 (二)探寻特例,提出猜想 1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。 2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。 3.让学生总结实验结果,得出猜想: 在三角形中,角与所对的边满足关系 这为下一步证明树立信心,不断的'使学生对结论的认识从感性逐步上升到理性。 (三)逻辑推理,证明猜想 1.强调将猜想转化为定理,需要严格的理论证明。 2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。 3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。 4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明。 (四)归纳总结,简单应用 1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。 2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。 3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。 (五)讲解例题,巩固定理 1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。 例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。 2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。 例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。 (六)课堂练习,提高巩固 1.在△ABC中,已知下列条件,解三角形。 (1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm 2.在△ABC中,已知下列条件,解三角形。 (1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115° 学生板演,老师巡视,及时发现问题,并解答。 (七)小结反思,提高认识 通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会? 1.用向量证明了正弦定 理,体现了数形结合的数学思想。 2.它表述了三角形的边与对角的正弦值的关系。 3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。 (从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。) (八)任务后延,自主探究 如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。 【高中数学说课稿】相关文章: 高中数学说课稿11-23 高中数学数列说课稿07-16 高中数学说课稿09-30 高中数学说课稿范文06-17 高中数学说课稿范文09-10 高中数学《向量》说课稿范文603-04 高中数学说课稿(15篇)08-20 高中数学说课稿15篇09-18 高中数学说课稿三篇11-21 《反函数》高中数学说课稿09-25高中数学说课稿 篇4
高中数学说课稿 篇5
高中数学说课稿 篇6
高中数学说课稿 篇7
高中数学说课稿 篇8
高中数学说课稿 篇9
高中数学说课稿 篇10