精选高中数学说课稿合集八篇
在教学工作者开展教学活动前,很有必要精心设计一份说课稿,借助说课稿可以有效提高教学效率。那要怎么写好说课稿呢?下面是小编为大家整理的高中数学说课稿8篇,欢迎阅读,希望大家能够喜欢。
高中数学说课稿 篇1
一、教材分析
集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
本节课主要分为两个部分,一是理解集合的定义及一些基本特征。二是掌握集合与元素之间的关系。
二、教学目标
1、学习目标
(1)通过实例,了解集合的含义,体会元素与集合之间的关系以及理解“属
于”关系;
(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;
2、能力目标
(1)能够把一句话一个事件用集合的方式表示出来。
(2)准确理解集合与及集合内的元素之间的关系。
3、情感目标
通过本节的把实际事件用集合的方式表示出来,从而培养数学敏感性,了 解到数学于生活中。
三、教学重点与难点
重点 集合的基本概念与表示方法;
难点 运用集合的两种常用表示方法———列举法与描述法,正确表示一些简单的集合;
四、教学方法
(1)本课将采用探究式教学,让学生主动去探索,激发学生的学习兴趣。并分层教学,这样可顾及到全体学生,达到优生得到培养,后进生也有所收获的效果;
(2)学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标。
五、学习方法
(1)主动学习法:举出例子,提出问题,让学生在获得感性认识的同时,
教师层层深入,启发学生积极思维,主动探索知识,培养学生思维想象 的综合能力。
(2)反馈补救法:在练习中,注意观察学生对学习的反馈情况,以实现“培
优扶差,满足不同。”
六、教学思路
具体的思路如下
复习的引入:讲一些集合的相关数学及相关数学家的经历故事!这可以让学生更加了解数学史从何使学生对数学更加感兴趣,有助于上课的效率!因为时间关系这里我就不说相关数学史咯。
一、 引入课题
军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体。
二、 正体部分
学生阅读教材,并思考下列问题:
(1)集合有那些概念?
(2)集合有那些符号?
(3)集合中元素的特性是什么?
(4)如何给集合分类?
(一)集合的有关概念
(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,
都可以称作对象.
(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由
这些对象的全体构成的集合.
(3)元素:集合中每个对象叫做这个集合的元素.
集合通常用大写的拉丁字母表示,如A、B、C、??元素通常用小写的拉丁字母表示,如a、b、c、??
1. 思考:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,
对学生的例子予以讨论、点评,进而讲解下面的问题。
2、元素与集合的关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A。(举例)集合A={2,3,4,6,9}a=2 因此我们知道 a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作a?A
要注意“∈”的方向,不能把a∈A颠倒过来写. (举例)
集合A={3,4,6,9}a=2 因此我们知道a?A
3、集合中元素的特性
(1)确定性:给定一个集合,任何对象是不是这个集合的`元素是确定的了.
(2)互异性:集合中的元素一定是不同的
(3)无序性:集合中的元素没有固定的顺序.
4、集合分类
根据集合所含元素个属不同,可把集合分为如下几类:
(1)把不含任何元素的集合叫做空集Ф
(2)含有有限个元素的集合叫做有限集
(3)含有无穷个元素的集合叫做无限集
注:应区分?,{?},{0},0等符号的含义
5、常用数集及其表示方法
(1)非负整数集(自然数集):全体非负整数的集合.记作N
(2)正整数集:非负整数集内排除0的集.记作N*或N+
(3)整数集:全体整数的集合.记作Z
(4)有理数集:全体有理数的集合.记作Q
(5)实数集:全体实数的集合.记作R
注:(1)自然数集包括数0.
(2)非负整数集内排除0的集.记作N*或N+,Q、Z、R等其它数集内排
除0的集,也这样表示,例如,整数集内排除0的集,表示成Z*
(二)集合的表示方法
我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
(1) 列举法:把集合中的元素一一列举出来,写在大括号内。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;
例1.(课本例1)
思考2,引入描述法
说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。
(2) 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;
例2.(课本例2)
说明:(课本P5最后一段)
思考3:(课本P6思考) 强调:描述法表示集合应注意集合的代表元素
{(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。
辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。
说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
(三)课堂练习(课本P6练习)
三、 归纳小结与作业
本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。
书面作业:习题1.1,第1- 4题
高中数学说课稿 篇2
各位老师:
大家好!
我叫xxx,来自xx。我说课的题目是《用样本的数字特征估计总体的数字特征》,内容选自于高中教材新课程人教A版必修3第二章第二节,课时安排为三个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析四大方面来阐述我对这节课的分析和设计:
一、教材分析
1、教材所处的地位和作用
在上一节我们已经学习了用图、表来组织样本数据,并且学习了如何通过图、表所提供的信息,用样本的频率分布估计总体的分布情况。本节课是在前面所学内容的基础上,进一步学习如何通过样本的情况来估计总体,从而使我们能从整体上更好地把握总体的规律,为现实问题的解决提供更多的帮助。
2教学的重点和难点
重点:⑴能利用频率颁布直方图估计总体的众数,中位数,平均数。
⑵体会样本数字特征具有随机性
难点:能应用相关知识解决简单的实际问题。
二、教学目标分析
1、知识与技能目标
(1)能利用频率颁布直方图估计总体的众数,中位数,平均数。
(2)能用样本的众数,中位数,平均数估计总体的众数,中位数,平均数,并结合实际,对问题作出合理判断,制定解决问题的有效方法。
2、过程与方法目标:
通过对本节课知识的学习,初步体会、领悟"用数据说话"的统计思想方法。
3、情感态度与价值观目标:
通过对有关数据的搜集、整理、分析、判断培养学生"实事求是"的科学态度和严谨的工作作风。
三、教学方法与手段分析
1、教学方法:结合本节课的教学内容和学生的认知水平,在教法上,我采用"问答探究"式的教学方法,层层深入。充分发挥教师的主导作用,让学生真正成为教学活动的主体。
2、教学手段:通过多媒体辅助教学,充分调动学生参与课堂教学的主动性与积极性。
四、教学过程分析
1、复习回顾,问题引入
「屏幕显示」
〈问题1〉在日常生活中,我们往往并不需要了解总体的分布形态,而是更关心总体的某一数字特征,例如:买灯泡时,我们希望知道灯泡的平均使用寿命,我们怎样了解灯泡的的使用寿命呢?当然不能把所有灯泡一一测试,因为测试后灯泡则报废了。于是,需要通过随机抽样,把这批灯泡的寿命看作总体,从中随机取出若干个个体作为样本,算出样本的数字特征,用样本的数字特征来估计总体的数字特征。
提出问题:什么是平均数,众数,中位数?
(教师提问,铺垫复习,学生思考、积极回答。根据学生回答,给出补充总结,借助用多媒体分别给出他们的定义)
「设计意图」使学生对本节课的学习做好知识准备。
(进一步提出实例、导入新课。)
「屏幕显示」
〈问题2〉选择薪水高的职业是人之常情,假如你大学毕业有两个工作相当的单位可供选择,现各从甲乙两单位分别随机抽取了50名员工的月工资资料如下(单位:元)
分组计算这两组50名员工的月工资平均数,众数,中位数并估计这两个公司员工的平均工资。你选择哪一个公司,并说明你的理由。
(学生分组分别求两组数据的平均工资。
学生:甲、乙平均工资分别为:甲:1320元,乙:1530元。
所以我选乙公司。
学生乙:甲、乙两公司的众数分别为甲:1200,乙:1000,所以我选择甲公司。
学生丙:我要根据我的能力选择。)
「设计意图」学生按"常理"做出选择,教师指出只凭平均工资做出判断的依据并不可靠,从而引导学生进一步深入问题。
2讲授新课,深入认识
⑴「屏幕显示」
例如,在上一节抽样调查的100位居民的月均用水量的数据中,我们画出了这组数据的频率分布直方图。现在,观察这组数据的频率分布直方图,能否得出这组数据的众数、中位数和平均数?
(把学生分成若干小组,分别计算平均数、中位数、众数,或估计平均数、中位数、众数。然后比较结果,会发现通过计算的结果和通过估计的结果出现了一定的误差。引导学生分析产生误差的原因。原因是由于样本数据的频率分布直方图把原始的一些数据给遗失了。让学生明白产生这样的误差对总体的估计没有大的影响,因为样本本身也有随机性。)
「设计意图」让学生懂得如何根据频率分布直方图估计样本的平均数、中位数和众数。使学生明白从直方图中估计样本的数字特征虽然会有一些误差,但直观、快速、可避免繁琐的计算和阅读数据的'过程。
⑵〈提出问题〉根据样本的众数、中位数、平均数估计总体平均数的基本数据,并对上一节的探究问题制定一个合理平价用水量的的标准。
(师生通过共同交流探讨得知仅以平均数或只使用中位数或众数制定出平价用水标准都是不合理的,必须综合考虑才能做出合理的选择)
「设计意图」使学生会依据众数、中位数、平均数对数据进行综合判断,并做出合理选择。也为接下来对他们优缺点的总结打下基础。
⑶总结出众数、中位数、平均数三种数字特征的优缺点。
(先由学生思考,然后再老师的引导下做出总结)
「设计意图」使学生能更准确更全面地依据样本的众数、中位数、平均数对数据进行综合判断,并做出合理选择,使实际问题得到正确的解决。
3、反思小结、培养能力
①学习利用频率直方图估计总体的众数、中位数和平均数的方法。
②介绍众数、中位数和平均数这三个特征数的优点和缺点。
③学习如何利用众数、中位数和平均数的特征去分析解决实际问题。
「设计意图」小节是一堂课的概括和总结,有利于优化学生的认知结构,把课堂教学传授的知识较快转化为学生的素质,也更进一步培养学生的归纳概括能力
4、课后作业,自主学习
课本练习
[设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。
5、板书设计
高中数学说课稿 篇3
一、教材分析
1、教材内容
本节课是苏教版第二章《函数概念和基本初等函数Ⅰ》2.1.3函数简单性质的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题.
2、教材所处地位、作用
函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质.通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题.通过上述活动,加深对函数本质的认识.函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础.此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一.从方法论的角度分析,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法.
3、教学目标
(1)知识与技能:使学生理解函数单调性的概念,掌握判别函数单调性
的方法;
(2)过程与方法:从实际生活问题出发,引导学生自主探索函数单调性的概念,应用图象和单调性的定义解决函数单调性问题,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.
(3)情感态度价值观:让学生体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质.
4、重点与难点
教学重点(1)函数单调性的概念;
(2)运用函数单调性的定义判断一些函数的`单调性.
教学难点(1)函数单调性的知识形成;
(2)利用函数图象、单调性的定义判断和证明函数的单调性.
二、教法分析与学法指导
本节课是一节较为抽象的数学概念课,因此,教法上要注意:
1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主体参与的积极性.
2、在运用定义解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决.
3、在鼓励学生主体参与的同时,不可忽视教师的主导作用.具体体现在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成功地完成书面表达.
4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性.
在学法上:
1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力.
2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃.
高中数学说课稿 篇4
敬的各位专家、评委:
下午好!
我的抽签序号是____,今天我说课的课题是《_______》第__课时。
我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。
一、教材分析
(一)地位与作用
______是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面______;另一方面______。同时,__________________。
(二)学情分析
(1)学生已熟练掌握_________________。
(2)学生的知识经验较为丰富,具备了教强的抽象思维能力和演绎推理能力。
(3)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。
(4) 学生层次参次不齐,个体差异比较明显。
二、目标分析
新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体现在教学过程中,新课标指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据____在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标:
(一)教学目标
(1)知识与技能
使学生理解_______,初步掌握______。
(2)过程与方法
引导学生通过观察、归纳、抽象、概括,______;能运用____解决简单的问题;使学生领会______的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。
(3)情感态度与价值观
在______的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
(二)重点难点
本节课的教学重点是________________________,教学难点是_____________________。
三、教法、学法分析
(一)教法
基于本节课的内容特点和__学生的年龄特征,按照__市高中数学“三五四”课堂教学策略,采用探究――体验教学法为主来完成教学,为了实现本节课的教学目标,在教法上我采取了:
1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.
2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.
3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.
(二)学法
在学法上我重视了:
1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。
2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。
四、教学过程分析
(一)教学过程设计
教学是一个教师的“导”,学生的“学”以及教学过程中的“悟”构成的和谐整体。教师的“导”也就是教师启发、诱导、激励、评价等为学生的学习搭建支架,把学习的任务转移给学生,学生就是接受任务,探究问题、完成任务。如果在教学过程中把“教与学”完美的结合也就是以“问题”为核心,通过对知识的发生、发展和运用过程的演绎、解释和探究来组织和推动教学。
(1)创设情境,提出问题。
新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生最大的思考空间,充分体现学生主体地位。
(2)引导探究,建构概念。
数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程.
(3)自我尝试,初步应用。
有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此。让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.
(4)当堂训练,巩固深化。
通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。
(5)小结归纳,回顾反思。
小结归纳不仅是对知识的简单回顾,还要发挥学生的`主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:(1)通过本节课的学习,你学到了哪些知识?(2)通过本节课的学习,你最大的体验是什么?(3)通过本节课的学习,你掌握了哪些技能?
(二)作业设计
作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.
我设计了以下作业:
(1)必做题
(2)选做题
(三)板书设计
板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。
五、评价分析
学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。我采用及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对____是否有一个完整的集训,并进行及时的调整和补充。
以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。
谢谢!
高中数学说课稿 篇5
一、教学目标
(一)知识与技能
1、进一步熟练掌握求动点轨迹方程的基本方法。
2、体会数学实验的直观性、有效性,提高几何画板的操作能力。
(二)过程与方法
1、培养学生观察能力、抽象概括能力及创新能力。
2、体会感性到理性、形象到抽象的思维过程。
3、强化类比、联想的方法,领会方程、数形结合等思想。
(三)情感态度价值观
1、感受动点轨迹的动态美、和谐美、对称美
2、树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的`勇气
二、教学重点与难点
教学重点:运用类比、联想的方法探究不同条件下的轨迹
教学难点:图形、文字、符号三种语言之间的过渡
三、、教学方法和手段
【教学方法】观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供给学生交流的机会,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。
【教学手段】利用网络教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的过程,通过多媒体动态演示,突破学生在旧知和新知形成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。
【教学模式】重点中学实施素质教育的课堂模式“创设情境、激发情感、主动发现、主动发展”。
高中数学说课稿 篇6
尊敬的各位评委、各位老师大家好!我说课的题目是《直线的点斜式方程》,选自人民教育出版社普通高中课程标准试验教科书数学必修2(A版),是第三章直线与方程中的第2节的第一课时3.2.1直线的点斜式方程的内容。下面我将从教学背景、教学方法、教学过程及教学特点等四个方面具体说明。
一、教学背景的分析
1.教材分析
直线的方程是学生在初中学习了一次函数的概念和图象及高中学习了直线的斜率后进行研究的。直线的方程属于解析几何学的基础知识,是研究解析几何学的开始,对后续研究两条直线的位置关系、圆的方程、直线与圆的位置关系、圆锥曲线等内容,无论在知识上还是方法上都是地位显要,作用非同寻常,是本章的重点内容之一。“直线的点斜式方程”可以说是直线的方程的形式中最重要、最基本的形式,在此花多大的时间和精力都不为过。直线作为常见的最简单的曲线,在实际生活和生产实践中有着广泛的应用。同时在这一节中利用坐标法来研究曲线的数形结合、几何直观等数学思想将贯穿于我们整个高中数学教学。
2.学情分析
我校的生源较差,学生的基础和学习习惯都有待加强。又由于刚开始学习解析几何,第一次用坐标法来求曲线的方程,在学习过程中,会出现“数”与“形”相互转化的困难。另外我校学生在探究问题的能力,合作交流的意识等方面更有待加强。
根据上述教材分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:
3.教学目标
(1)了解直线的方程的概念和直线的点斜式方程的推导过程及方法;
(2)明确点斜式、斜截式方程的形式特点和适用范围;初步学会准确地使用直线的点斜式、斜截式方程 ;
(3)从实例入手,通过类比、推广、特殊化等,使学生体会从特殊到一般再到特殊的认知规律;
(4)提倡学生用旧知识解决新问题,通过体会直线的斜截式方程与一次函数的关系等活动,培养学生主动探究知识、合作交流的意识,并初步了解数形结合在解析几何中的应用。
4. 教学重点与难点
(1)重点: 直线点斜式、斜截式方程的特点及其初步应用。
(2)难点:直线的方程的概念,点斜式方程的`推导及点斜式、斜截式方程的应用。
二、教法学法分析
1.教法分析:根据学情,为了能调动学生学习的积极性,本节课采用“实例引导的启发式”问题教学法。帮助学生将几何问题代数化,用代数的语言描述直线的几何要素及其关系,进而将直线的问题转化为直线方程的问题,通过对直线的方程的研究,最终解决有关直线的一些简单的问题。另外可以恰当的利用多媒体课件进行辅助教学,激发学生的学习兴趣。
2.学法分析:学生从问题中尝试、总结、质疑、运用,体会学习数学的乐趣;通过推导直线的点斜式方程的学习,要了解用坐标法求方程的思想;通过一个点和方向可以确定一条直线,进而可求出直线的点斜式方程,要能体会“形”与“数”的转化思想。
下面我就对具体的教学过程和设计加以说明:
三、教学过程的设计及实施
整个教学过程是由六个问题组成,共分为四个环节,学习或涉及四个概念:
温故知新,澄清概念----直线的方程
深入探究,获得新知--------点斜式
拓展知识,再获新知--------斜截式
小结引申,思维延续--------两点式
平面上的点可以用坐标表示,直线的倾斜程度可以用斜率表示,那么平面上的直线如何表示呢?这就是本节要学习的内容。
(一)温故知新,澄清概念----直线的方程
问题一:画出一次函数y=2x+1的图象;y=2x+1是一个方程吗?若是,那么方程的解与图象上的点的坐标有何关系?
[学生活动] 通过动手画图,思考并尝试用语言进行初步的表述。
[教师活动] 对于不同学生的表述进行分析、归纳,用规范的语言对方程和直线的方程进行描述。
[设计意图]从学生熟知的旧知识出发澄清直线的方程的概念,试图做到“用学生已有的数学知识去学数学”,从而突破难点。通过对这个问题的研究,一方面认识到以方程的解为坐标的点在直线上,另一方面认识到直线上的点的坐标满足方程;从而使同学意识到直线可以由直线上任意一点P(x,y)的坐标x和y之间的等量关系来表示。
问题二:若直线经过点A(-1, 3),斜率为-2,点P在直线l上。
(1) 若点P在直线l上从A点开始运动,横坐标增加1时,点P的坐标是 ;
(2)画出直线l,你能求出直线l的方程吗?
(3)若点P在直线l上运动,设P点的坐标为(x,y),你会有什么方法找到x,y满足的关系式?
[学生活动]学生独立思考5分钟,必要的话可进行分组讨论、合作交流。
[教师活动]巡视。肯定学生的各种方法及大胆尝试的行为;并引导学生观察发现,得到当点P在直线l上运动时(除点 A外),点P与定点A(-1, 3)所确定的直线的斜率恒等于-2,体会“动中有静”的思维策略。
[设计意图]复习斜率公式;待定系数法;初步体会坐标法。同时引导学生注意为什么要把分式化简?(若不化简,就少一点),感受数学简洁的美感和严谨性。还要指出这样的事实:当点P在直线l上运动时,P的坐标(x,y)满足方程2x+y-1=0.反过来,以方程2x+y-1=0的解为坐标的点在直线l上。把学生的思维引到用坐标法研究直线的方程上来,此时再把问题深入,进入第二环节。
(二)深入探究,获得新知----点斜式
问题三: ① 若直线l经过点P0(x0,y0),且斜率为k,求直线l的方程。
②直线的点斜式方程能否表示经过P0(x0,y0)的所有直线?
[学生活动] ①学生叙述,老师板书,强调斜率公式与点斜式的区别。 ②指导学生用笔转一转不难发现,当直线l的倾斜角α=90°时,斜率k不存在,当然不存在点斜式方程;讨论k=0的情况;观察并总结点斜式方程的特征。
[设计意图] 由特殊到一般的学习思路,突破难点,培养学生的归纳概括能力。通过对这个问题的探究使学生获得直线点斜式方程;由②知:当直线斜率k不存在时,不能用点斜式方程表示直线,培养思维的严谨性,这时直线l与y轴平行,它上面的每一点的横坐标都等于x0,直线l的方程是:x=x0;通过学生的观察讨论总结,明确点斜式方程的形式特点和适用范围,通过下面的例题和基础练习,突破重难点。
问题四:分别求经过点且满足下列条件的直线的方程
(1) 斜率;(2)倾斜角; (3)与轴平行 ;(4)与轴垂直。
[练习]P95.1、2。
[学生活动]学生独立完成并展示或叙述,老师点评。
[设计意图]充分用好教材的例题和习题,因为这些题都是专家精心编排的,充分体现必要性及合理性;做到及时反馈,便于反思本环节的教学,指导下个环节的安排;突破重点内容后,进入第三环节。
(三)拓展知识,再获新知----斜截式
问题五:(1)一条直线与y轴交于点(0,3),直线的斜率为2,求这条直线的方程。
(2)若直线l斜率为k,且与y轴的交点是 P(0,b),求直线l的方程。
[学生活动]学生独立完成后口述,教师板书。
[设计意图] 由一般到特殊再到一般,培养学生的推理能力,同时引出截距的概念及斜截式方程,强调截距不是距离。类比点斜式明确斜截式方程的形式特点和适用范围及几何意义,并讨论其与一次函数的关系。通过下面的基础练习,突破重点。
[练习]P95.3。
[设计意图]充分用好教材习题,及时反馈本环节的教学情况,指导下个环节的安排。
(四)小结引申,思维延续----两点式
课堂小结 1、有哪些收获?(点斜式方程:;斜截式方程:;求直线方程的方法:公式法、等斜率法、待定系数法。)
2、哪些地方还没有学好?
问题六:(1)直线l过(1,0)点,且与直线平行,求直线l的方程。
(2)直线l过点(2,-1)和点(3,-3),求直线l的方程。
[学生活动]学生独立思考并尝试自主完成,可以相互讨论,探讨解题思路。
[教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,有时间的话,可以让学生口述解题思路,也可以投影学生的证明过程,纠正出现的错误,规范书写的格式;没时间就布置分层作业。
[设计意图](1)小题与上一节的平行综合,学生应该有思路求出方程;(2)小题解决方法较多,预设有利用公式法、等斜率法、待定系数法,让好一点的学生有一些发散思维的机会,以及课后学习的空间,使探究气氛有一点高潮。另外也为下节课研究直线的两点式方程作了重要的准备。
分层作业 必做题:P100.A组:1.(1)(2)(3)、5.
选做题:P100.A组:1.(4)(5)(6).
[设计意图]通过分层作业,做到因材施教,使不同的学生在数学上得到不同的发展,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展。
四、教学特点分析
(一)实例引导。在字母运算、公式推导之前,总是用实例作为铺垫,使学生有学习知识的可能和兴趣,关注学困生的成长与发展。
(二)启发式教学。教学中总是以提问的方式叙述所学内容,如:1.直角坐标系内的所有直线都有点斜式方程吗?2.截距是距离吗?它可以是负数吗?3.你会求直线在轴上的截距吗?4.观察方程 ,它的形式具有什么特点?它与我们学过的一次函数有什么关系?等等。启发学生的思维,作好与学生的对话与交流活动。
(三)注重自主探究。设计问题链,环环相扣,使学生的探究活动贯穿始终。教师总是站在学生思维的最近发展区上,布设了由浅入深的学习环境突破重点、难点,引导学生逐步发现知识的形成过程。设计了两次思维发散点,分别是问题二和问题六的第(2)问,要求学生分组讨论,合作交流,为学生创造充分的探究空间,学生在交流成果的过程中,高效的完成教学任务。
高中数学说课稿 篇7
我将从教学理念;教材分析;教学目标;教学过程;教法、学法;教学评价六个方面来陈述我对本节课的设计方案。
一、教学理念
新的课程标准明确指出“数学是人类文化的重要组成部分,构成了公民所必须具备的一种基本素质。”其含义就是:我们不仅要重视数学的应用价值,更要注重其思维价值和人文价值。
因此,创造性地使用教材,积极开发、利用各种教学资源,创设教学情境,让学生通过主动参与、积极思考、与人合作交流和创新等过程,获得情感、能力、知识的全面发展。本节课力图打破常规,充分体现以学生为本,全方位培养、提高学生素质,实现课程观念、教学方式、学习方式的转变。
二、教材分析
三角函数是中学数学的重要内容之一,它既是解决生产实际问题的工具,又是学习高等数学及其它学科的基础。本节课是在学习了任意角的三角函数,两角和与差的三角函数以及正、余弦函数的图象和性质后,进一步研究函数y=Asin(ωx+φ)的简图的画法,由此揭示这类函数的图象与正弦曲线的关系,以及A、ω、φ的物理意义,并通过图象的变化过程,进一步理解正、余弦函数的性质,它是研究函数图象变换的.一个延伸,也是研究函数性质的一个直观反映。共3课时,本节课是继学习完振幅、周期、初相变换后的第二课时。
本节课倡导学生自主探究,在教师的引导下,通过五点作图法正确找出函数y=sinx到y=sin(ωx+φ)的图象变换规律是本节课的重点。
难点是对周期变换、相位变换先后顺序调整后,将影响图象平移量的理解。因此,分析清不管哪种顺序变换,都是对一个字母x而言的变换成为突破本节课教学难点的关键。
依据《课标》,根据本节课内容和学生的实际,我确定如下教学目标。
三、教学目标
[知识与技能]
通过“五点作图法”正确找出函数y=sinx到y=sin(ωx+φ)的图象变换规律,能用五点作图法和图象变换法画出函数y=Asin(ωx+φ)的简图,能举一反三地画出函数y=Asin(ωx+φ)+k和y=Acos(ωx+φ)的简图。
[过程与方法]
通过引导学生对函数y=sinx到y=sin(ωx+φ)的图象变换规律的探索,让学生体会到由简单到复杂,特殊到一般的化归思想;并通过对周期变换、相位变换先后顺序调整后,将影响图象变换这一难点的突破,让学生学会抓住问题的主要矛盾来解决问题的基本思想方法。
[情感态度与价值观]
课堂中,通过对问题的自主探究,培养学生的独立意识和独立思考能力;小组交流中,学会合作意识;在解决问题的难点时,培养学生解决问题抓主要矛盾的思想。在问题逐步深入的研究中唤起学生追求真理,乐于创新的情感需求,引发学生渴求知识的强烈愿望,树立科学的人生观、价值观。
四、教学过程(六问三练)
1、设置情境
《函数y=Asin(ωx+φ)的图象(第二课时)》说课稿。
高中数学说课稿 篇8
各位老师:
大家好!
我叫***,来自**。我说课的题目是《简单随机抽样》,内容选自于新课程人教A版必修3第二章第一节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、和教学过程分析等四大方面来阐述我对这节课的分析和设计:
一、教材分析
1.教材所处的地位和作用
"简单随机抽样"是"随机抽样"的基础,"随机抽样"又是"统计学"的基础,因此,在"统计学"中,"简单随机抽样"是基础的基础。在初中学生已学过相关概念,如"抽样""总体"、"个体"、"样本"、"样本容量"等,具有一定基础,新教材把"统计"这部分内容编入必修部分,突出了统计在日常生活中的应用,体现它在中学数学中的地位,但同时也给学生学习增加了难度。
2教学的重点和难点
重点:掌握简单随机抽样常见的两种方法(抽签法、随机数表法)
难点:理解简单随机抽样的科学性,以及由此推断结论的可靠性
二、教学目标分析
1.知识与技能目标:
正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;
2.过程与方法目标:
(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;
(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
3.情感,态度和价值观目标
通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性
三、教学方法与手段分析
为了充分让学生自己分析、判断、自主学习、合作交流。因此,我采用讨论发现法教学,并对学生渗透"从特殊到一般"的.学习方法,由于本节课内容实例多,信息容量大,文字多,我采用多媒体辅助教学,节省时间,提高教学效率,另外采用这种形式也可强化学生感观刺激,也能大大提高学生的学习兴趣。
四、教学过程分析
(一)设置情境,提出问题
例1:请问下列调查是"普查"还是"抽样"调查?
A、一锅水饺的味道B、旅客上飞机前的安全检查
c、一批炮弹的杀伤半径D、一批彩电的质量情况
E、美国总统的民意支持率
学生讨论后,教师指出生活中处处有"抽样"
「设计意图」生活中处处有"抽样"调查,明确学习"抽样"的必要性。
(二)主动探究,构建新知
例2:语文老师为了了解某班同学对某首诗的背诵情况,应采用下列哪种抽查方式?为什么?
A、在班级12名班委名单中逐个抽查5位同学进行背诵
B、在班级45名同学中逐一抽查10位同学进行背诵
先让学生分析、选择B后,师生一起归纳其特征:
(1)不放回逐一抽样,
(2)抽样有代表性(个体被抽到可能性相等),学生体验B种抽样的科学性后,教师指出这是简单随机抽样,并复习初中讲过的有关概念,最后教师补充板书课题--(简单随机)抽样及其定义。
「设计意图」例2从正面分析简单随机抽样的科学性、公平性,突出"等可能性"特征。这是突破教学难点的重要环节之一。
例3我们班有44名学生,现从中抽出5名学生去参加学生座谈会,要使每名学生的机会均等,我们应该怎么做?谈谈你的想法。
先让学生独立思考,然后分小组合作学习,最后各小组推荐一位同学发言,最后师生一起归纳"抽签法"步骤:
(1)编号制签
(2)搅拌均匀
(3)逐个不放回抽取n次。教师板书上面步骤。
「设计意图」在自主探究,合作交流中构建新知,体验"抽签法"的公平性,从而突破难点,突出重点。
请一位同学说说例2采用"抽签法"的实施步骤。
「设计意图」
1、反馈练习,落实知识点,突出重点。
2、体会"抽签法"具有"简单、易行"的优点。
〈屏幕出示〉
例4、假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验
提问:这道题适合用抽签法吗?
让学生进行思考,分析抽签法的局限性,从而引入随机数表法。教师出示一份随机数表,并介绍随机数表,强调数表上的数字都是随机的,各个数字出现的可能性均等,结合上例让学生讨论随机数表法的步骤,最后师生一起归纳步骤:
(1)编号
(2)在随机数表上确定起始位置
(3)取数。教师板书上面步骤。
请一位同学说说例2采用"随机数表法"的实施步骤。
「设计意图」
1、体会随机数表法的科学性
2、体会随机数表法的优越性:避免制签、搅拌。
3、反馈练习,落实知识点,突出重点。
㈢课堂小结:
1.简单随机抽样及其两种方法
2.两种方法的操作步骤
(采用问答形式)
「设计意图」通过小结使学生们对知识有一个系统的认识,突出重点,抓住关键,培养概括能力。
㈣布置作业
课本练习2、3
[设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。
【高中数学说课稿】相关文章:
高中数学说课稿11-23
高中数学数列说课稿07-16
高中数学说课稿09-30
高中数学说课稿范文06-17
高中数学说课稿范文09-10
高中数学说课稿4篇09-12
【精选】高中数学说课稿3篇12-01
高中数学《向量》说课稿范文603-04
【精选】高中数学说课稿四篇08-17
精选高中数学说课稿六篇12-23