高中数学说课稿

时间:2025-05-22 09:46:46 高中数学 我要投稿

【实用】高中数学说课稿4篇

  作为一位杰出的教职工,就不得不需要编写说课稿,借助说课稿可以让教学工作更科学化。那要怎么写好说课稿呢?以下是小编整理的高中数学说课稿4篇,欢迎阅读与收藏。

【实用】高中数学说课稿4篇

高中数学说课稿 篇1

  各位评委老师你们好,我是第?号选手。我今天说课的题目是《 》,我将从教材分析,教法,学法,教学程序,等几个方面进行我的说课。

  一,教材分析

  这部分我主要从3各方面阐述

  1, 教材的地位和作用

  《 》是北师大版必修?第?章第?节的内容,在此之前,同学们已经学习了、,这些对本节课的学习有一定的铺垫作用,同是学好本节的内容不仅加深前面所学习的知识,而且为后面我们将要学习的?知识打好基础,?所以说本节课的学习在整个高中数学学习过程中占有重要地位!

  2.根据教学大纲的规定,教学内容的要求,教学对象的实情我确定了如下3维教学目标(i)知识目标:

  II能力目标;初步培养学生归纳,抽象,概括的思维能力。

  训练学生认识问题,分析问题,解决问题的能力

  III情感目标;通过学生的探索,史学生体会数学就在我们身边,让学生发现生活的数学,培养不断超越的创新品质,提高数学素养。

  3, 结合以上分析以及高一学生的人知水平我确定啦本节课的重难点

  教学重点:

  教学难点;

  二,教法

  教学方法是完成教学任务的手段,恰当的学者教学方法至关重要,根据本节课的教学内容,考虑到高一学生已经初步具有一定的探索能力,并喜欢挑战问题的实际情况,为啦更有效的突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的知道思想。我主要采用 问题探究法 引导发现发,案例教学法,讲授法,在教学过程中精心设计带有启发性和思考性的问题,满足学生探索的欲望,培养学生的学习兴趣,激发来自学生主体最有利的动力。并运用多媒体课件的形式,更形象直观,提高教学效果的同时加大啦课堂密度!

  学法

  根据学生的年龄特征,运用讯息渐进,逐步升入,理论联系实际的规律,让学生从问题中质疑,尝试,归纳,总结,运用。培养学生发现问题,研究问题,分析问题的'能力。自主参与知识的发生,发展,形成过程,完成从感性认识 到理性思维的质的飞跃,史学生在知识和能力方面都有所提高。

  三,教学程序

  1, 创设情境,提出问题

  让学生产生强烈的问题意识,学生试着利用以前的知识经验,同化索引出当前学习的新知识,激发学习的兴趣和动机。

  2, 引导探究,直奔主题。(揭示概念)

  参用小组合作的方式,各小组派代表发表成果,教师作为教学的引导者,给予肯定的评价,并给出一定的指导,最后师生共同得出??!教师引导学生进一步学习。整个过程充分突出学生的主体地位,培养学生合作探究的能力,激发兴趣,更让学生在思考学术问题以及解决数学问题的思想方法上有更深的交流。

  3, 自我尝试,初步应用

  在讲解是,不仅在于怎样接,更在于为什么这样解,及时引导学生探究运用知识,解决问题的方法,及时对解题方法和规律进行概括,有利于培养学生的思维能力。 4 .当堂训练,巩固深化(反馈矫正)

  通过学生的主体参与,让学生巩固所学的知识,实现对知识再认识的以及在数学解题思想方法层面上进一步升华

  5,归纳小结,回顾反思

  从知识,方法,经验等方面进行总结。让学生思考本节课学到啦那些知识,还有那些疑问。本节课最大的体验。本节课你学会那些技能。

  知识性的内容小结,可以把课堂教学传授的知识尽快转化为学生的素养,数学思想发放的小结,可以使学生更深刻地理解数学思想发放在解题中的地位和作用,并且逐步培养学生良好的个性品质目标。

  ,6,变式延伸,布置作业

  必做题,对本届课学生知识水平的反馈。选作题,对本节课知识内容的延伸。使不同层次学生都可以收获成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,让每个学生在原有的基础上有所发展。做到人人学数学,人人学不同的数学。

  7板书设计

  力图简洁,形象,直观,概括以便学生易于掌握。

  四,教学评价

  学生学习结果评价当然重要,但是学习过程的评价更加重要。本节课中高度重视学生学习过程中的参与度,自信心,团队精神,合作意识,独立思考习惯的养成。数学发现的能力,以及学习的兴趣和成就感,,学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多学生主动参与,师生对话可以实现师生合作,适度的研讨可以驻京生生交流,知识的生成和问题的解决可以让学生感受到成功的喜悦。缜密的思考可以培养学生独立思考的习惯,让学生在教室评价,学生评价以及自我评价的过程中体验知识的积累,探索能力的长进和思维品质的提高,为学生的可持续发展打下基础,

  以上就是我的说课内容。不当之处,希望各位老师给予指正。谢谢各位评委老师!你们幸苦啦!

高中数学说课稿 篇2

  一.内容和内容分析

  “函数的奇偶性”是人教版数学必修教材必修一第一章第三节的内容,本节的主要内容是研究函数的一个性质—函数的奇偶性,学习奇函数和偶函数的概念.奇偶性是函数的一条重要性质,教材从学生熟悉的两个特殊函数入手,从特殊到一般,从具体到抽象,从感性到理性比较系统地介绍了函数的奇偶性.从知识结构看,它既是函数概念的拓展和深化,又为后续研究指数函数、对数函数、幂函数、三角函数的基础,因此,本节课起着承上启下的重要作用。 本节课的教学重点:函数奇偶性的概念及判定。

  二.目标和目标分析

  (1)知识目标:从形和数两个方面进行引导,使学生理解奇偶性的概念,学会利用定义判断

  简单函数的奇偶性。

  (2)能力目标:通过设置问题情境培养学生判断、推理的能力,同时渗透数形结合和由特殊

  到一般的数学思想方法.

  (3)情感目标:在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神。

  三.教学问题诊断分析

  导入有点慢,讲的有点细,导致时间上没有完成教学任务,感觉还是自己讲的太多,不能充分调动学生的积极性。

  四.教学支持条件分析

  用了多媒体,使用ppt,使得奇偶性函数概念的探究过程更形象更直观,是学生理解更深刻。

  五.教学过程设计

  为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了四个主要的教学程序是:

  1.设疑导入、观图激趣:

  使用幻灯片展示图片蝴蝶、雪花等让学生感受生活中的美,从而引入对称在函数中的体现。

  2.指导观察、形成概念:

  作出函数y=x的图象,并观察这两个函数图象的对称性如何?

  借助课件演示,让学生分别计算f(1),f(-1),f(2),f(-2),学生很快会得到f(-1)=f(1),f(-2)=f(2),进而提出在定义域内是否对所有的x,都有类似的情况?借助课件演示,学生会得出结论,f(-x)=f(x),从而引导学生先把它们具体化,再用数学符号表示。根据以上特点,请学生用完整的语言叙述定义,同时给出板书:

  函数f(x)的定义域为A,且关于原点对称,如果有f(-x)=f(x),则称f(x)为偶函数,类比探究2

  偶函数的过程,得到奇函数的概念,又通过具体的例子说明了定义域关于原点对称是研究奇偶性的前提。

  3.学生探索、发展思维。

  接着通过学案上的例一,总结函数奇偶性的判断方法及步骤:

  (1)求出函数的定义域,并判断是否关于原点对称

  (2)验证f(-x)=f(x)或f(-x)=-f(x)

  (3)得出结论

  由学生小结判断奇偶性的步骤之后,提出新的问题:函数按奇偶性如何分类?既奇又偶的函数是不是只有一个?试举例说明。

  4.布置作业:

  六.目标检测设计

  学案上的题型主要包括奇偶性函数的判断及应用

  七.教学反思:(从两方面)

  1.思成功

  一:是通过设计富有挑战性的问题来呈现背景,通过问题的探究和自主学习来获取相关概念,实现了 “教学逻辑”与“学习逻辑”的连通、“知识逻辑”与“认知逻辑”的连通;二:是在老师创设的情境中,每个学生都积极投入探究过程,学生在疑惑中探索,在探索中思考,在思考中发现,大部分学生积极性高涨,通过看别人怎样观察,

  听别人怎样介绍,也学到了知识.

  2.思不足

  学生练习:在教学过程中应多注意学生的.活动,由单一的问答式转化为多方位的考察,以采用

  学生板演或者把学生练习投影到屏幕上让全班学生纠正等方式,更好的考察学生掌握情况。

  语言组织:

  在讲授过程中还要注意到说话语速,语言组织等讲授技巧,应该用平缓的语气讲授,语言描述要简练易懂,不能拖泥带水。

  教学环节(的完整):

  在授课过程中要注意到教学环节设计,我们的教学过程有复习引入、讲授新课、例题讲解、学生练习、课时小结、布置作业等几个重要的环节,由于时间的关系没有来得及小结造成教学设计不完善。在以后的教学过程中要注意这些环节。

  以上是我对这节课以后的教学反思,还有很多地方做的还不完善,我要在以后的教学中努力改进这些错误,以便更好的适应教学,努力使自己的教学更上一层楼。

高中数学说课稿 篇3

  一、教材分析:

  《向量的加法》是《必修》4第二章第二单元中“平面向量的线性运算”的第一节课。本节内容有向量加法的平行四边形法则、三角形法则及应用,向量加法的运算律及应用,大约需要1课时。向量的加法是向量的线性运算中最基本的一种运算,向量的加法及其几何意义为后继学习向量的减法运算及其几何意义、向量的数乘运算及其几何意义奠定了基础;其中三角形法则适用于求任意多个向量的和,在空间向量与立体几何中有很普遍的应用。所以本课在“平面向量”及“空间向量”中有很重要的地位。

  二、学情分析:

  学生在上节课中学习了向量的定义及表示,相等向量,平行向量等概念,知道向量可以自由移动,这是学习本节内容的基础。学生对数的运算了如指掌,并且在物理中学过力的合成、位移的合成等矢量的加法,所以向量的加法可通过类比数的加法、以所学的物理模型为背景引入,这样做有利于学生更好地理解向量加法的意义,准确把握两个加法法则的特点。

  三、教学目的:

  1、通过对向量加法的探究,使学生掌握向量加法的概念,结合物理学实际理解向量加法的意义。能正确领会向量加法的平行四边形法则和三角形法则的几何意义,并能运用法则作出两个已知向量的和向量。

  2、在应用活动中,理解向量加法满足交换律和结合律以及表述两个运算律的几何意义。掌握有特殊位置关系的两个向量之和,比如共线向量,共起点向量、共终点向量等。

  3、通过本节的学习,培养学生类比、迁移、分类、归纳等数学方面的能力。

  四、教学重、难点

  重点:向量的加法法则。探究向量的加法法则并正确应用是本课的重点。两个加法法则各有特点,联系紧密,你中有我,我中有你,实质相同,但是三角形法则适用范围更加广泛,且简便易行,所以是详讲内容,平行四边形法则在本课中所占份量略少于三角形法则。

  难点:对三角形法则的理解;方向相反的两个向量的加法。主要是让学生认识到三角形法则的实质是:将已知向量首尾相接,而不是表示向量的有向线段之间必须构成三角形。

  五、教学方法

  本节采用以下教学方法:1、类比:由数的加法运算类比向量的加法运算。2、探究:由力的合成引入平行四边形法则,在法则的运用中观察图形得出三角形法则,探求共线向量的加法,发现三角形法则适用于任意向量相加;通过图形,观察得出向量加法满足交换律、结合律等,这些都体现探究式教学法的运用。3、讲解与练习:对两个法则特点的分析,例题都采取了引导与讲解的方法,学生课堂完成教材中的练习。4、多媒体技术的运用,能直观地表现向量的平移,相等向量的意义,更能说清两个法则的几何意义及运算律。

  六、数学思想的体现:

  1、分类的思想:总的来说本课中向量的加法分为不共线向量及共线向量两种形式,共线向量又分为方向相同与方向相反两种情形,然后专门对零向量与任意向量相加作了规定,这样对任意向量的加法都做了讨论,线索清楚。

  2、类比思想:使之与数的加法进行类比,使学生对向量的加法不致于太陌生,既有似曾相识的感觉,又能从对比中看出两者的不同,效果较好。

  3、归纳思想:主要体现在以下三个环节①学完平行四边形法则和三角形法则后,归纳总结,对不共线向量相加,两个法则都可以选用。②由共线向量的加法总结出三角形法则适用于任意两个向量的相加,而三角形法则仅适用于不共线向量相加。③对向量加法的结合律和探讨中,又使学生发现了三角形法则还适用于任意多个向量的加法。归纳思想在这三个环节中的运用,使得学生对两个加法法则,尤其是三角形法则的理解,步步深入。

  七、教学过程:

  1、回顾旧知:本节要进行向量的平移,且对向量加法分共线与不共线两种情况,所以要复习向量、相等向量、共线向量等概念,这些都是新课学习中必要的知识铺垫。

  2、引入新课:

  (1)平行四边形法则的引入。

  学生在物理学中虽然接触过位移的合成,但是并没有形成三角形法则的概念;而对平行四边形法则学生已学过,很熟悉。所以我决定由力的合成引入向量加法的平行四边形法则。平行四边形法则的特点是起点相同,但是物理中力的合成是在有相同的作用点的条件下合成的,引入到数学中向量加法的平行四边形法则,所给出的图形也是现成的平行四边形,而学生刚学完相等向量,对相等向量的概念还没有深刻的认识,易产生误解:表示两个已知向量的有向线段的起点必须在一起才能用平行四边形法则,不在一起不能用。这时要通过讲解例1,使学生认识到可以通过平移向量,使表示两个向量的有向线段有共同的起点。这一点对理解及运用法则求两向量的和很重要。

  设计意图:本着从学生最熟悉、离学生最近的知识经验为接入点,用学生熟知的方法来解决新的问题——向量的加法,这样新中有旧,学生容易接受,也使学科间的渗透发挥了作用,加深了学生对向量加法的'平行四边形法则的“起点相同”这一特点的认识,例1的讲解使学生认识到当表示向量的有向线段的起点不在一起时,须把起点移到一起,至此才能使学生完成对平行四边形法则理解真正到位。

  (2)三角形法则的引入。三角形法则没有按照教材中利用位移的合成引入,而是从前面所讲的平行四边形法则的图形中直接引入(如图)。

  所以这种把两个向量相加的方法称为三角形法则。接下来用幻灯片完整展示三角形法则,同时法则的作法叙述、作图过程对学生也起到了示例的作用。于是前面的例1还可以利用三角形法则来做。

  这时,总结出两个不共线向量求和时,平行四边形法则与三角形法则都可以用。

  设计意图:由平行四边形法则的图形引入三角形法则,可以很清楚地使学生从向何意义上认识到两个法则之间的密切联系,理解它们的实质,而且衔接自然,能够使学生对比地得出两个法则的特点与实质,并对两个法则的特点有较深刻的印象。

  (3)共线向量的加法

  方向相同的两个向量相加,对学生来说较易完成,“将它们接在一起,取它们的方向及长度之和,作为和向量的方向与长度。”引导学生分析作法,结果发现还是运用了三角形法则:首尾相接,方向由第一个向量的起点指向第二个向量的终点。

  方向相反的两个向量相加,对学生来说是个难点,首先从作图上不知道怎样做。但是学生学过有理数加法中的异号两数相加:“异号两数相加,用较大

  的绝对值减去较小的绝对值,符号取绝对值较大的数的符号。”类比异号两数相加,他们会用较长的模减去较短的模,方向取模较长的向量的方向。具体做法由老师引导学生尝试运用三角形法则去做,发现结论正确。

  反思过程,学生自然会想到方向相同的两个向量相加,类似于同号两数相加。这说明两个共线向量相加依然可用三角形法则 通过以上几个环节的讨论,可以作个简单的小结:两个不共线向量相加,可采用平行四边形法则或三角形法则,而两个共线向量相加在本课所学方法中只能用三角形法则,说明三角形法则适用于任意两个向量相加。

  设计意图:通过对共线向量加法的探讨,拓宽了学生对三角形法则的认识,使得不同位置的向量相加都有了依据,并且采用类比的方法,使学生对共线向量的加法,尤其是方向相反的两个向量的加法更易于理解,可以化解难点。

  (4)向量加法的运算律

  ①交换律:交换律是利用平行四边形法则的图形,又结合三角

  形法则得出,理解起来没什么困难,再一次强化了学生对两个法则特点及实质的认识。

  ②结合律:结合律是通过三个向量首尾相接,先加前两个再与第三个向量相加,和先加后两个向量再与第一个向量相加所得结果相同。

  接下来是对应的两个练习,运用交换律与结合律计算向量的和。

  设计意图:运算律的引入给加法运算带来方便,从后面的练习中学生能够体会到这点。由结合律还使学生发现,多个向量相加,同样可以运用三角形法则:将所加向量首尾相接,和向量的方向是由第一个向量的起点指向最后一个向量的终点。这样使学生明白,三角形法则适用于任意多个向量相加。

  3、小结

  先由学生小结,检查学生对本课重要知识的认识,也给学生一个概括本节知识的机会,然后用课件展示小结内容,使学生印象更深。

  (1)平行四边形法则:起点相同,适用于不共线向量的求和。

  (2)三角形法则首尾相接,适用于任意多个向量的求和。

  (3)运算律

高中数学说课稿 篇4

  各位老师:

  大家好!我叫***,来自**。我说课的题目是《概率的基本性质》,内容选自于高中教材新课程人教A版必修3第三章第一节,课时安排为三个课时,本节课内容为第三课时。下面我将从教材分析、教学目标分析、教法分析、教学过程分析四大方面来阐述我对这节课的分析和设计:

  一、教材分析

  1、教材所处的地位和作用

  本节课主要包含了两部分内容:一是事件的关系与运算,二是概率的基本性质,多以基本概念和性质为主。它是本册第二章统计的延伸,又是后面"古典概型"及"几何概型"的基础。在整个教学中起到承上启下的作用。同时也是新课改以来考查的热点之一。

  2、教学的重点和难点

  重点:概率的加法公式及其应用;事件的关系与运算。

  难点:互斥事件与对立事件的区别与联系

  二、教学目标分析

  1.知识与技能目标

  ⑴了解随机事件间的基本关系与运算;

  ⑵掌握概率的几个基本性质,并会用其解决简单的概率问题。

  2、过程与方法:

  ⑴通过观察、类比、归纳培养学生运用数学知识的综合能力;

  ⑵通过学生自主探究,合作探究培养学生的动手探索的能力。

  3、情感态度与价值观:

  通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣。

  三、教法分析

  采用实验观察、质疑启发、类比联想、探究归纳的教学方法。

  四、教学过程分析

  1、创设情境,引入新课

  在掷骰子的试验中,我们可以定义许多事件,如:

  c1=﹛出现的点数=1﹜,c2=﹛出现的点数=2﹜

  c3=﹛出现的点数=3﹜,c4=﹛出现的点数=4﹜

  c5=﹛出现的点数=5﹜,c6=﹛出现的点数=6﹜

  D1=﹛出现的点数不大于1﹜D2=﹛出现的点数大于3﹜

  D3=﹛出现的点数小于5﹜,E=﹛出现的点数小于7﹜

  f=﹛出现的点数大于6﹜,G=﹛出现的点数为偶数﹜

  H=﹛出现的点数为奇数﹜

  ⑴以引入例中的事件c1和事件H,事件c1和事件D1为例讲授事件之的包含关系和相等关系。

  ⑵从以上两个关系学生不难发现事件间的关系与集合间的关系相类似。进而引导学生思考,是否可以把事件和集合对应起来。

  「设计意图」引出我们接下来要学习的主要内容:事件之间的关系与运算

  2、探究新知

  ㈠事件的关系与运算

  ⑴经过上面的思考,我们得出:

  试验的可能结果的全体←→全集

  ↓↓

  每一个事件←→子集

  这样我们就把事件和集合对应起来了,用已有的集合间关系来分析事件间的关系。

  集合的并→两事件的并事件(和事件)

  集合的交→两事件的交事件(积事件)

  在此过程中要注意帮助学生区分集合关系与事件关系之间的不同。

  (例如:两集合A∪B,表示此集合中的任意元素或者属于集合A或者属于集合B;而两事件A和B的并事件A∪B发生,表示或者事件A发生,或者事件B发生。)

  「设计意图」为更好地理解互斥事件和对立事件打下基础,

  ⑵思考:①若只掷一次骰子,则事件c1和事件c2有可能同时发生么?

  ②在掷骰子实验中事件G和事件H是否一定有一个会发生?

  「设计意图」这两道思考题都很容易得到答案,主要目的是为引出接下来将要学习的互斥事件和对立事件,让学生从实际案例中体验它们各自的特征以及它们之间的区别与联系。

  ⑶总结出互斥事件和对立事件的概念,并通过多媒体的图形演示使学生们能更好地理解它们的特征以及它们之间的区别与联系。

  ⑷练习:通过多媒体显示两道练习,目的是让学生们能够及时巩固对互斥事件和对立事件的学习,加深理解。

  ㈡概率的基本性质:

  ⑴回顾:频率=频数/试验的次数

  我们知道当试验次数足够大时,用频率来估计概率,由于频率在0~1之间,所以,可以得到概率的基本性质、

  (通过对频率的理解并结合前面投硬币的`实验来总结出概率的基本性质,师生共同交流得出结果)

  3、典型例题探究

  例1一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?

  事件A:命中环数大于7环;事件B:命中环数为10环;

  事件c:命中环数小于6环;事件D:命中环数为6、7、8、9、10环、

  分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚

  例2如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是1/4,取到方块(事件B)的概率是1/4,问:

  (1)取到红色牌(事件c)的概率是多少?

  (2)取到黑色牌(事件D)的概率是多少?

  分析:事件c是事件A与事件B的并,且A与B互斥,因此可用互斥事件的概率和公式求解;事件c与事件D是对立事件,因此P(D)=1—P(c).

  「设计意图」通过这两道例题,进一步巩固学生对本节课知识的掌握,并将所学知识应用到实际解决问题中去。

  4、课堂小结

  ⑴理解事件的关系和运算

  ⑵掌握概率的基本性质

  「设计意图」小结是引导学生对问题进行回味与深化,使知识成为系统。让学生尝试小结,提高学生的总结能力和语言表达能力。教师补充帮助学生全面地理解,掌握新知识。

  5、布置作业

  习题3、1A1、3、4

  「设计意图」课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。

  五、板书设计

  概率的基本性质

  一、事件间的关系和运算

  二、概率的基本性质

  三、例1的板书区

  例2的板书区

  四、规律性质总结

【高中数学说课稿】相关文章:

高中数学说课稿09-30

高中数学说课稿11-23

高中数学数列说课稿07-16

高中数学说课稿范文06-17

高中数学说课稿范文09-10

高中数学说课稿4篇09-12

精选高中数学说课稿三篇11-06

高中数学说课稿15篇09-18

高中数学说课稿(15篇)08-20

高中数学说课稿三篇11-21