高中数学说课稿

时间:2025-06-05 09:48:03 高中数学 我要投稿

有关高中数学说课稿汇编七篇

  在教学工作者开展教学活动前,就有可能用到说课稿,说课稿可以帮助我们提高教学效果。那么大家知道正规的说课稿是怎么写的吗?以下是小编收集整理的高中数学说课稿7篇,希望对大家有所帮助。

有关高中数学说课稿汇编七篇

高中数学说课稿 篇1

  各位老师:

  大家好!我叫***,来自**。我说课的题目是《概率的基本性质》,内容选自于高中教材新课程人教A版必修3第三章第一节,课时安排为三个课时,本节课内容为第三课时。下面我将从教材分析、教学目标分析、教法分析、教学过程分析四大方面来阐述我对这节课的分析和设计:

  一、教材分析

  1、教材所处的地位和作用

  本节课主要包含了两部分内容:一是事件的关系与运算,二是概率的基本性质,多以基本概念和性质为主。它是本册第二章统计的延伸,又是后面"古典概型"及"几何概型"的基础。在整个教学中起到承上启下的作用。同时也是新课改以来考查的热点之一。

  2、教学的重点和难点

  重点:概率的加法公式及其应用;事件的关系与运算。

  难点:互斥事件与对立事件的区别与联系

  二、教学目标分析

  1.知识与技能目标

  ⑴了解随机事件间的基本关系与运算;

  ⑵掌握概率的几个基本性质,并会用其解决简单的概率问题。

  2、过程与方法:

  ⑴通过观察、类比、归纳培养学生运用数学知识的综合能力;

  ⑵通过学生自主探究,合作探究培养学生的动手探索的能力。

  3、情感态度与价值观:

  通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣。

  三、教法分析

  采用实验观察、质疑启发、类比联想、探究归纳的教学方法。

  四、教学过程分析

  1、创设情境,引入新课

  在掷骰子的试验中,我们可以定义许多事件,如:

  c1=﹛出现的点数=1﹜,c2=﹛出现的点数=2﹜

  c3=﹛出现的点数=3﹜,c4=﹛出现的点数=4﹜

  c5=﹛出现的点数=5﹜,c6=﹛出现的点数=6﹜

  D1=﹛出现的点数不大于1﹜D2=﹛出现的点数大于3﹜

  D3=﹛出现的点数小于5﹜,E=﹛出现的点数小于7﹜

  f=﹛出现的点数大于6﹜,G=﹛出现的点数为偶数﹜

  H=﹛出现的点数为奇数﹜

  ⑴以引入例中的事件c1和事件H,事件c1和事件D1为例讲授事件之的包含关系和相等关系。

  ⑵从以上两个关系学生不难发现事件间的关系与集合间的关系相类似。进而引导学生思考,是否可以把事件和集合对应起来。

  「设计意图」引出我们接下来要学习的主要内容:事件之间的关系与运算

  2、探究新知

  ㈠事件的关系与运算

  ⑴经过上面的思考,我们得出:

  试验的可能结果的全体←→全集

  ↓↓

  每一个事件←→子集

  这样我们就把事件和集合对应起来了,用已有的集合间关系来分析事件间的关系。

  集合的并→两事件的并事件(和事件)

  集合的交→两事件的交事件(积事件)

  在此过程中要注意帮助学生区分集合关系与事件关系之间的不同。

  (例如:两集合A∪B,表示此集合中的任意元素或者属于集合A或者属于集合B;而两事件A和B的并事件A∪B发生,表示或者事件A发生,或者事件B发生。)

  「设计意图」为更好地理解互斥事件和对立事件打下基础,

  ⑵思考:①若只掷一次骰子,则事件c1和事件c2有可能同时发生么?

  ②在掷骰子实验中事件G和事件H是否一定有一个会发生?

  「设计意图」这两道思考题都很容易得到答案,主要目的是为引出接下来将要学习的互斥事件和对立事件,让学生从实际案例中体验它们各自的特征以及它们之间的区别与联系。

  ⑶总结出互斥事件和对立事件的概念,并通过多媒体的图形演示使学生们能更好地理解它们的`特征以及它们之间的区别与联系。

  ⑷练习:通过多媒体显示两道练习,目的是让学生们能够及时巩固对互斥事件和对立事件的学习,加深理解。

  ㈡概率的基本性质:

  ⑴回顾:频率=频数/试验的次数

  我们知道当试验次数足够大时,用频率来估计概率,由于频率在0~1之间,所以,可以得到概率的基本性质、

  (通过对频率的理解并结合前面投硬币的实验来总结出概率的基本性质,师生共同交流得出结果)

  3、典型例题探究

  例1一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?

  事件A:命中环数大于7环;事件B:命中环数为10环;

  事件c:命中环数小于6环;事件D:命中环数为6、7、8、9、10环、

  分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚

  例2如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是1/4,取到方块(事件B)的概率是1/4,问:

  (1)取到红色牌(事件c)的概率是多少?

  (2)取到黑色牌(事件D)的概率是多少?

  分析:事件c是事件A与事件B的并,且A与B互斥,因此可用互斥事件的概率和公式求解;事件c与事件D是对立事件,因此P(D)=1—P(c).

  「设计意图」通过这两道例题,进一步巩固学生对本节课知识的掌握,并将所学知识应用到实际解决问题中去。

  4、课堂小结

  ⑴理解事件的关系和运算

  ⑵掌握概率的基本性质

  「设计意图」小结是引导学生对问题进行回味与深化,使知识成为系统。让学生尝试小结,提高学生的总结能力和语言表达能力。教师补充帮助学生全面地理解,掌握新知识。

  5、布置作业

  习题3、1A1、3、4

  「设计意图」课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。

  五、板书设计

  概率的基本性质

  一、事件间的关系和运算

  二、概率的基本性质

  三、例1的板书区

  例2的板书区

  四、规律性质总结

高中数学说课稿 篇2

  一、说设计理念

  《数学课程标准》指出要让学生感受生活中处处有数学,用数学知识解决生活中的实际问题。

  基于这一理念,我在教学过程中力求联系学生生活实际和已有的知识经验,从学生感兴趣的素材,设计新颖的导入与例题教学,给数学课富予新的生命力。课堂中力求构建一种自主探究、和谐合作的教学氛围,让学生经历知识的探究过程,培养学生感受生活中的数学和用数学知识解决生活问题的能力,体验数学的应用价值。

  二、教材分析:

  (一)教材的地位和作用

  有关统计图的认识,小学阶段主要认识条形统计图、折线统计图和扇形统计图。考虑到扇形统计图在日常生活中的广泛应用,《标准》把它作为必学内容安排在本单元。本单元是在前面学习了条形统计图和折线统计图的特点和作用的基础上进行教学的。主要通过熟悉的事例使学生体会到扇形统计图的实用价值。

  (二)教学目标

  1、联系生活情境了解扇形统计图的特点和作用

  2、能读懂扇形统计图,从中获取有效的信息。

  3、让学生在观察、比较、讨论和交流中体会扇形统计图反映的是整体和部分的关系。

  (三)教学重点:

  1、能读懂扇形统计图,理解扇形统计图的特点和作用,并能从中获取有效信息。

  2、认识折线统计图,了解折线统计图的特点。

  (四)教学难点:

  1、能从扇形统计图中获得有用信息,并做出合理推断。

  2、能根据统计图和数据进行数据变化趋势的分析。

  二、学情分析

  本单元的`教学是在学生已有统计经验的基础上,学习新知的。六年级的学生已经学习了条形统计图和折线统计图,知道他们的特点,并具有一定的概括、分析能力,在此基础上,通过新旧知识对比,自然生成新知识点。

  三、设计理念和教法分析

  1、本堂课力争做到由“关注知识”转向“关注学生”,由“传授知识”转向“引导探索”,“教师是组织者、领导者。”将课堂设置问题给学生,让学生自己获取信息、分析信息,自主探索、合作交流,参与知识的构建。

  2、运用探究法。探究学习的内容以问题的形式出现在教师的引导下,学生自主探究,让学生在课堂上多活动、多思考,自主构建知识体系。引导学生获取信息并合作交流。

  四、说学法

  《数学课程标准》指出有效的数学学习不能单纯的依赖模仿和记忆,动手操作、自主探索与合作交流是学生学习数学的重要方式。教学时,我通过学生感兴趣的话题引入,引导学生关注身边的数学,使学生体会到观察、概括、想象、迁移等数学学习方法,在师生互动中让每个学生都动口,动手,动脑。培养学生学习的主动性和积极性。

  五、说教学程序

  本课分成创设情境,感知特点——分析数据,理解特征——尝试制图,看图分析——实践应用,全课总结四环节。

  六、说教学过程

  (一)复习引新

  1、复习旧知

  提问:我们学习过哪些统计方法?其中条形统计图和折线统计图各有什么特点?

  2、引入新课

  (二)自主探索,学习新知

  新知识教学分二步教学:第一步整体感知,看懂统计图,理解特征,这是本节课的重点。在教学中,以知识迁移的方式建立新旧知识之间的联系,放手让学生独立思考,互相合作,进一步了解统计图的特征。

  第二步实践应用环节。在教学中,精心地选取了大量的生活素材,使统计知识与生活建立紧密的联系。根据统计图回答问题,是让学生运用到刚才学习到的知识来解决生活中的一些问题,并巩固刚才所学的知识,为学生自己发现问题、提出问题及自己解决问题提供了较大的空间。同时,让学生感悟由于数据变化带来的启示,并能合理地进行推理与判断

  三、课堂总结

  四、布置作业。

  五、板书设计:

高中数学说课稿 篇3

  一、教学内容分析

  圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

  二、学生学习情况分析

  我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

  三、设计思想

  由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率.

  四、教学目标

  1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

  2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

  3.借助多媒体辅助教学,激发学习数学的兴趣.

  五、教学重点与难点:

  教学重点

  1.对圆锥曲线定义的理解

  2.利用圆锥曲线的定义求“最值”

  3.“定义法”求轨迹方程

  教学难点:

  巧用圆锥曲线定义解题

  六、教学过程设计

  【设计思路】

  (一)开门见山,提出问题

  一上课,我就直截了当地给出——

  例题1:(1) 已知A(-2,0), B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是( )。

  (A)椭圆 (B)双曲线 (C)线段 (D)不存在

  (2)已知动点 M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是( )。

  (A)椭圆 (B)双曲线 (C)抛物线 (D)两条相交直线

  【设计意图】

  定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

  为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

  【学情预设】

  估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折—— 如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)2

  5这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|5

  入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。

  在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是 ,实轴长为 ,焦距为 。以深化对概念的理解。

  (二)理解定义、解决问题

  例2 (1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910 相内切,求△ABC面积的`最大值。

  (2)在(1)的条件下,给定点P(-2,2), 求|PA|

  七、教学反思

  1.本课将借助于“XXX”,将使全体学生参与活动成为可能,使原来令人难以理解的抽象的数学理论变得形象,生动且通俗易懂,同时,运用“多媒体课件”辅助教学,节省了板演的时间,从而给学生留出更多的时间自悟、自练、自查,充分发挥学生的主体作用,这充分显示出“多媒体课件”与探究合作式教学理念的有机结合的教学优势。

  2.利用两个例题及其引申,通过一题多变,层层深入的探索,以及对猜测结果的检测研究,培养学生思维能力,使学生从学会一个问题的求解到掌握一类问题的解决方法. 循序渐进的让学生把握这类问题的解法;将学生容易混淆的两类求“最值问题”并为一道题,方便学生进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。

  总之,如何更好地选择符合学生具体情况,满足教学目标的例题与练习、灵活把握课堂教学节奏仍是我今后工作中的一个重要研究课题.而要能真正进行素质教育,培养学生的创新意识,自己首先必须更新观念——在教学中适度使用多媒体技术,让学生有参与教学实践的机会,能够使学生在学习新知识的同时,激发起求知的欲望,在寻求解决问题的办法的过程中获得自信和成功的体验,于不知不觉中改善了他们的思维品质,提高了数学思维能力。

高中数学说课稿 篇4

  高三第一阶段复习,也称“知识篇”。在这一阶段,学生重温高一、高二所学课程,全面复习巩固各个知识点,熟练掌握基本方法和技能;然后站在全局的高度,对学过的知识产生全新认识。在高一、高二时,是以知识点为主线索,依次传授讲解的,由于后面的相关知识还没有学到,不能进行纵向联系,所以,学的知识往往是零碎和散乱,而在第一轮复习时,以章节为单位,将那些零碎的、散乱的知识点串联起来,并将他们系统化、综合化,把各个知识点融会贯通。对于普通高中的学生,第一轮复习更为重要,我们希望能做高考试题中一些基础题目,必须侧重基础,加强复习的针对性,讲求实效。

  一、内容分析说明

  1、本小节内容是初中学习的多项式乘法的继续,它所研究的二项式的乘方的展开式,与数学的其他部分有密切的联系:

  (1)二项展开式与多项式乘法有联系,本小节复习可对多项式的变形起到复习深化作用。

  (2)二项式定理与概率理论中的二项分布有内在联系,利用二项式定理可得到一些组合数的恒等式,因此,本小节复习可加深知识间纵横联系,形成知识网络。

  (3)二项式定理是解决某些整除性、近似计算等问题的一种方法。

  2、高考中二项式定理的试题几乎年年有,多数试题的难度与课本习题相当,是容易题和中等难度的

  试题,考察的题型稳定,通常以选择题或填空题出现,有时也与应用题结合在一起求某些数、式的

  近似值。

  二、学校情况与学生分析

  (1)我校是一所镇普通高中,学生的基础不好,记忆力较差,反应速度慢,普遍感到数学难学。但大部分学生想考大学,主观上有学好数学的愿望。

  (2)授课班是政治、地理班,学生听课积极性不高,听课率低(60﹪),注意力不能持久,不能连续从事某项数学活动。课堂上喜欢轻松诙谐的气氛,大部分能机械的模仿,部分学生好记笔记。

  三、教学目标

  复习课二项式定理计划安排两个课时,本课是第一课时,主要复习二项展开式和通项。根据历年高考对这部分的考查情况,结合学生的特点,设定如下教学目标:

  1、知识目标:(1)理解并掌握二项式定理,从项数、指数、系数、通项几个特征熟记它的展开式。

  (2)会运用展开式的通项公式求展开式的特定项。

  2、能力目标:(1)教给学生怎样记忆数学公式,如何提高记忆的持久性和准确性,从而优化记忆品质。记忆力是一般数学能力,是其它能力的基础。

  (2)树立由一般到特殊的解决问题的意识,了解解决问题时运用的数学思想方法。

  3、情感目标:通过对二项式定理的复习,使学生感觉到能掌握数学的部分内容,树立学好数学的信心。有意识地让学生演练一些历年高考试题,使学生体验到成功,在明年的高考中,他们也能得分。

  四、教学过程

  1、知识归纳

  (1)创设情景:①同学们,还记得吗? 、 、 展开式是什么?

  ②学生一起回忆、老师板书。

  设计意图:①提出比较容易的问题,吸引学生的注意力,组织教学。

  ②为学生能回忆起二项式定理作铺垫:激活记忆,引起联想。

  (2)二项式定理:①设问 展开式是什么?待学生思考后,老师板书

  = C an+C an-1b1+…+C an-rbr+…+C bn(n∈N*)

  ②老师要求学生说出二项展开式的特征并熟记公式:共有 项;各项里a的指数从n起依次减小1,直到0为止;b的指数从0起依次增加1,直到n为止。每一项里a、b的指数和均为n。

  ③巩固练习 填空

  设计意图:①教给学生记忆的方法,比较分析公式的特点,记规律。

  ②变用公式,熟悉公式。

  (3) 展开式中各项的系数C , C , C ,… , 称为二项式系数.

  展开式的通项公式Tr+1=C an-rbr , 其中r= 0,1,2,…n表示展开式中第r+1项.

  2、例题讲解

  例1求 的展开式的第4项的二项式系数,并求的第4项的系数。

  讲解过程

  设问:这里 ,要求的第4项的有关系数,如何解决?

  学生思考计算,回答问题;

  老师指明①当项数是4时, ,此时 ,所以第4项的二项式系数是 ,

  ②第4项的'系数与的第4项的二项式系数区别。

  板书

  解:展开式的第4项

  所以第4项的系数为 ,二项式系数为 。

  选题意图:①利用通项公式求项的系数和二项式系数;②复习指数幂运算。

  例2 求 的展开式中不含的 项。

  讲解过程

  设问:①不含的 项是什么样的项?即这一项具有什么性质?

  ②问题转化为第几项是常数项,谁能看出哪一项是常数项?

  师生讨论 “看不出哪一项是常数项,怎么办?”

  共同探讨思路:利用通项公式,列出项数的方程,求出项数。

  老师总结思路:先设第 项为不含 的项,得 ,利用这一项的指数是零,得到关于 的方程,解出 后,代回通项公式,便可得到常数项。

  板书

  解:设展开式的第 项为不含 项,那么

  令 ,解得 ,所以展开式的第9项是不含的 项。

  因此 。

  选题意图:①巩固运用展开式的通项公式求展开式的特定项,形成基本技能。

  ②判断第几项是常数项运用方程的思想;找到这一项的项数后,实现了转化,体现转化的数学思想。

  例3求 的展开式中, 的系数。

  解题思路:原式局部展开后,利用加法原理,可得到展开式中的 系数。

  板书

  解:由于 ,则 的展开式中 的系数为 的展开式中 的系数之和。

  而 的展开式含 的项分别是第5项、第4项和第3项,则 的展开式中 的系数分别是: 。

  所以 的展开式中 的系数为

  例4 如果在( + )n的展开式中,前三项系数成等差数列,求展开式中的有理项.

  解:展开式中前三项的系数分别为1, , ,

  由题意得2× =1+ ,得n=8.

  设第r+1项为有理项,T =C · ·x ,则r是4的倍数,所以r=0,4,8.

  有理项为T1=x4,T5= x,T9= .

  3、课堂练习

  1.(20xx年江苏,7)(2x+ )4的展开式中x3的系数是

  A.6B.12 C.24 D.48

  解析:(2x+ )4=x2(1+2 )4,在(1+2 )4中,x的系数为C ·22=24.

  答案:C

  2.(20xx年全国Ⅰ,5)(2x3- )7的展开式中常数项是

  A.14 B.14 C.42 D.-42

  解析:设(2x3- )7的展开式中的第r+1项是T =C (2x3) (- )r=C 2 ·

  (-1)r·x ,

  当- +3(7-r)=0,即r=6时,它为常数项,∴C (-1)6·21=14.

  答案:A

  3.(20xx年湖北,文14)已知(x +x )n的展开式中各项系数的和是128,则展开式中x5的系数是_____________.(以数字作答)

  解析:∵(x +x )n的展开式中各项系数和为128,

  ∴令x=1,即得所有项系数和为2n=128.

  ∴n=7.设该二项展开式中的r+1项为T =C (x ) ·(x )r=C ·x ,

  令 =5即r=3时,x5项的系数为C =35.

  答案:35

  五、课堂教学设计说明

  1、这是一堂复习课,通过对例题的研究、讨论,巩固二项式定理通项公式,加深对项的系数、项的二项式系数等有关概念的理解和认识,形成求二项式展开式某些指定项的基本技能,同时,要培养学生的运算能力,逻辑思维能力,强化方程的思想和转化的思想。

  2、在例题的选配上,我设计了一定梯度。第一层次是给出二项式,求指定的项,即项数已知,只需直接代入通项公式即可(例1);第二层次(例2)则需要自己创造代入的条件,先判断哪一项为所求,即先求项数,利用通项公式中指数的关系求出,此后转化为第一层次的问题。第三层次突出数学思想的渗透,例3需要变形才能求某一项的系数,恒等变形是实现转化的手段。在求每个局部展开式的某项系数时,又有分类讨论思想的指导。而例4的设计是想增加题目的综合性,求的n过程中,运用等差数列、组合数n等知识,求出后,有化归为前面的问题。

  六、个人见解

高中数学说课稿 篇5

  一、教材分析

  1、教材所处的地位和作用

  奇偶性是人教A版第一章集合与函数概念的第3节函数的基本性质的第2小节。

  奇偶性是函数的一条重要性质,教材从学生熟悉的 及入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。因此,本节课起着承上启下的重要作用。

  2、学情分析

  从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。

  从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题、

  3、教学目标

  基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:

  【知识与技能】

  1、能判断一些简单函数的奇偶性。

  2、能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。

  【过程与方法】

  经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。

  【情感、态度与价值观】

  通过自主探索,体会数形结合的思想,感受数学的对称美。

  从课堂反应看,基本上达到了预期效果。

  4、教学重点和难点

  重点:函数奇偶性的概念和几何意义。

  几年的教学实践证明,虽然函数奇偶性这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下面的错误。他们往往流于表面形式,只根据奇偶性的定义检验成立即可,而忽视了考虑函数定义域的问题。因此,在介绍奇、偶函数的定义时,一定要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。因此,我把函数的奇偶性概念设计为本节课的重点。在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。

  难点:奇偶性概念的数学化提炼过程。

  由于,学生看待问题还是静止的、片面的,抽象概括能力比较薄弱,这对建构奇偶性的概念造成了一定的困难。因此我把奇偶性概念的数学化提炼过程设计为本节课的难点。

  二、教法与学法分析

  1、教法

  根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、类比法为辅。教学中,精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的`积极状态,从而培养思维能力。从课堂反应看,基本上达到了预期效果。

  2、学法

  让学生在观察一归纳一检验一应用的学习过程中,自主参与知识的发生、发展、形成的过程,从而使学生掌握知识。

  三、教学过程

  具体的教学过程是师生互动交流的过程,共分六个环节:设疑导入、观图激趣;指导观察、形成概念;学生探索、领会定义;知识应用,巩固提高;总结反馈;分层作业,学以致用。下面我对这六个环节进行说明。

  (一)设疑导入、观图激趣

  由于本节内容相对独立,专题性较强,所以我采用了开门见山导入方式,直接点明要学的内容,使学生的思维迅速定向,达到开始就明确目标突出重点的效果。

  用多媒体展示一组图片,使学生感受到生活中的对称美。再让学生观察几个特殊函数图象。通过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为学习新知识作好铺垫。

  (二)指导观察、形成概念

  在这一环节中共设计了2个探究活动。

  探究1 、2 数学中对称的形式也很多,这节课我们就以函数和=︱x︱以及和为例展开探究。这个探究主要是通过学生的自主探究来实现的,由于有图片的铺垫,绝大多数学生很快就说出函数图象关于Y轴(原点)对称。接着学生填表,从数值角度研究图象的这种特征,体现在自变量与函数值之间有何规律? 引导学生先把它们具体化,再用数学符号表示。借助课件演示(令 比较 得出等式 , 再令 ,得到 ) 让学生发现两个函数的对称性反应到函数值上具有的特性, ()然后通过解析式给出严格证明,进一步说明这个特性对定义域内任意一个 都成立。 最后给出偶函数(奇函数)定义(板书)。

  在这个过程中,学生把对图形规律的感性认识,转化成数量的规律性,从而上升到了理性认识,切实经历了一次从特殊归纳出一般的过程体验。

  (三) 学生探索、领会定义

  探究3 下列函数图象具有奇偶性吗?

  设计意图:深化对奇偶性概念的理解。强调:函数具有奇偶性的前提条件是--定义域关于原点对称。(突破了本节课的难点)

  (四)知识应用,巩固提高

  在这一环节我设计了4道题

  例1判断下列函数的奇偶性

  选例1的第(1)及(3)小题板书来示范解题步骤,其他小题让学生在下面完成。

  例1设计意图是归纳出判断奇偶性的步骤:

  (1) 先求定义域,看是否关于原点对称;

  (2) 再判断f(-x)=-f(x) 还是 f(-x)=f(x)。

  例2 判断下列函数的奇偶性:

  例3 判断下列函数的奇偶性:

  例2、3设计意图是探究一个函数奇偶性的可能情况有几种类型?

  例4(1)判断函数的奇偶性。

  (2)如图给出函数图象的一部分,你能根据函数的奇偶性画出它在y轴左边的图象吗?

  例4设计意图加强函数奇偶性的几何意义的应用。

  在这个过程中,我重点关注了学生的推理过程的表述。通过这些问题的解决,学生对函数的奇偶性认识、理解和应用都能提升很大一个高度,达到当堂消化吸收的效果。

  (五)总结反馈

  在以上课堂实录中充分展示了教法、学法中的互动模式,问题贯穿于探究过程的始终,切实体现了启发式、问题式教学法的特色。

  在本节课的最后对知识点进行了简单回顾,并引导学生总结出本节课应积累的解题经验。知识在于积累,而学习数学更在于知识的应用经验的积累。所以提高知识的应用能力、增强错误的预见能力是提高数学综合能力的很重要的策略。

  (六)分层作业,学以致用

  必做题:课本第36页练习第1-2题。

  选做题:课本第39页习题1、3A组第6题。

  思考题:课本第39页习题1、3B组第3题。

  设计意图:面向全体学生,注重个人差异,加强作业的针对性,对学生进行分层作业,既使学生掌握基础知识,又使学有余力的学生有所提高,进一步达到不同的人在数学上得到不同的发展。

高中数学说课稿 篇6

  一、教材分析

  集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

  本节课主要分为两个部分,一是理解集合的定义及一些基本特征。二是掌握集合与元素之间的关系。

  二、教学目标

  1、学习目标

  (1)通过实例,了解集合的含义,体会元素与集合之间的关系以及理解“属

  于”关系;

  (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;

  2、能力目标

  (1)能够把一句话一个事件用集合的方式表示出来。

  (2)准确理解集合与及集合内的元素之间的关系。

  3、情感目标

  通过本节的把实际事件用集合的方式表示出来,从而培养数学敏感性,了 解到数学于生活中。

  三、教学重点与难点

  重点 集合的基本概念与表示方法;

  难点 运用集合的两种常用表示方法———列举法与描述法,正确表示一些简单的集合;

  四、教学方法

  (1)本课将采用探究式教学,让学生主动去探索,激发学生的学习兴趣。并分层教学,这样可顾及到全体学生,达到优生得到培养,后进生也有所收获的效果;

  (2)学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标。

  五、学习方法

  (1)主动学习法:举出例子,提出问题,让学生在获得感性认识的同时,

  教师层层深入,启发学生积极思维,主动探索知识,培养学生思维想象 的综合能力。

  (2)反馈补救法:在练习中,注意观察学生对学习的反馈情况,以实现“培

  优扶差,满足不同。”

  六、教学思路

  具体的思路如下

  复习的引入:讲一些集合的相关数学及相关数学家的经历故事!这可以让学生更加了解数学史从何使学生对数学更加感兴趣,有助于上课的效率!因为时间关系这里我就不说相关数学史咯。

  一、 引入课题

  军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

  在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体。

  二、 正体部分

  学生阅读教材,并思考下列问题:

  (1)集合有那些概念?

  (2)集合有那些符号?

  (3)集合中元素的特性是什么?

  (4)如何给集合分类?

  (一)集合的有关概念

  (1)对象:我们可以感觉到的.客观存在以及我们思想中的事物或抽象符号,

  都可以称作对象.

  (2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由

  这些对象的全体构成的集合.

  (3)元素:集合中每个对象叫做这个集合的元素.

  集合通常用大写的拉丁字母表示,如A、B、C、??元素通常用小写的拉丁字母表示,如a、b、c、??

  1. 思考:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,

  对学生的例子予以讨论、点评,进而讲解下面的问题。

  2、元素与集合的关系

  (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A。(举例)集合A={2,3,4,6,9}a=2 因此我们知道 a∈A

  (2)不属于:如果a不是集合A的元素,就说a不属于A,记作a?A

  要注意“∈”的方向,不能把a∈A颠倒过来写. (举例)

  集合A={3,4,6,9}a=2 因此我们知道a?A

  3、集合中元素的特性

  (1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.

  (2)互异性:集合中的元素一定是不同的

  (3)无序性:集合中的元素没有固定的顺序.

  4、集合分类

  根据集合所含元素个属不同,可把集合分为如下几类:

  (1)把不含任何元素的集合叫做空集Ф

  (2)含有有限个元素的集合叫做有限集

  (3)含有无穷个元素的集合叫做无限集

  注:应区分?,{?},{0},0等符号的含义

  5、常用数集及其表示方法

  (1)非负整数集(自然数集):全体非负整数的集合.记作N

  (2)正整数集:非负整数集内排除0的集.记作N*或N+

  (3)整数集:全体整数的集合.记作Z

  (4)有理数集:全体有理数的集合.记作Q

  (5)实数集:全体实数的集合.记作R

  注:(1)自然数集包括数0.

  (2)非负整数集内排除0的集.记作N*或N+,Q、Z、R等其它数集内排

  除0的集,也这样表示,例如,整数集内排除0的集,表示成Z*

  (二)集合的表示方法

  我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

  (1) 列举法:把集合中的元素一一列举出来,写在大括号内。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;

  例1.(课本例1)

  思考2,引入描述法

  说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

  (2) 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

  如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;

  例2.(课本例2)

  说明:(课本P5最后一段)

  思考3:(课本P6思考) 强调:描述法表示集合应注意集合的代表元素

  {(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

  辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。

  说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

  (三)课堂练习(课本P6练习)

  三、 归纳小结与作业

  本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。

  书面作业:习题1.1,第1- 4题

高中数学说课稿 篇7

  一、教材分析:

  1、教材的地位与作用:

  线性规划是运筹学的一个重要分支,在实际生活中有着广泛的应用。本节内容是在学习了不等式、直线方程的基础上,利用不等式和直线方程的有关知识展开的,它是对二元一次不等式的深化和再认识、再理解。通过这一部分的学习,使学生进一步了解数学在解决实际问题中的应用,体验数形结合和转化的思想方法,培养学生学习数学的兴趣、应用数学的意识和解决实际问题的.能力。

  2、教学重点与难点:

  重点:画可行域;在可行域内,用图解法准确求得线性规划问题的最优解。

  难点:在可行域内,用图解法准确求得线性规划问题的最优解。

  二、目标分析:

  在新课标让学生经历“学数学、做数学、用数学”的理念指导下,本节课的教学目标分设为知识目标、能力目标和情感目标。

  知识目标:

  1、了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行

  域和最优解等概念;

  2、理解线性规划问题的图解法;

  3、会利用图解法求线性目标函数的最优解.

  能力目标:

  1、在应用图解法解题的过程中培养学生的观察能力、理解能力。

  2、在变式训练的过程中,培养学生的分析能力、探索能力。

  3、在对具体事例的感性认识上升到对线性规划的理性认识过程中,培养学生运用数形结合思想解题的能力和化归能力。

  情感目标:

  1、让学生体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用,品尝学习数学的乐趣。

  2、让学生体验数学活动充满着探索与创造,培养学生勤于思考、勇于探索的精神;

  3、让学生学会用运动观点观察事物,了解事物之间从一般到特殊、从特殊到一般的辨证关系,渗透辩证唯物主义认识论的思想。

  三、过程分析:

  数学教学是数学活动的教学。因此,我将整个教学过程分为以下六个教学环节:1、创设情境,提出问题;2、分析问题,形成概念;3、反思过程,提炼方法;4、变式演练,深入探究;5、运用新知,解决问题;6、归纳总结,巩固提高。

  1、创设情境,提出问题:

  在课堂教学的开始,我以一组生动的动画(配图片)描述出在神奇的数学王国里,有一种算法广泛应用于工农业、军事、交通运输、决策管理与规划等领域,应用它已节约了亿万财富,还被列为20世纪对科学发展和工程实践影响最大的十大算法之一。它为何有如此大的魅力?它又是怎样的一种神奇算法呢?我以景激情,以情激思,点燃学生的求知欲,引领学生进入学习情境。

【高中数学说课稿】相关文章:

高中数学数列说课稿07-16

高中数学说课稿11-23

高中数学说课稿09-30

高中数学说课稿范文09-10

高中数学说课稿范文06-17

高中数学《向量》说课稿范文603-04

精选高中数学说课稿六篇12-23

高中数学说课稿(15篇)08-20

精选高中数学说课稿四篇12-06

【精选】高中数学说课稿4篇03-29