- 相关推荐
高中数学必修三知识点
在平凡的学习生活中,大家都没少背知识点吧?知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。还在为没有系统的知识点而发愁吗?下面是小编整理的高中数学必修三知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。
高中数学必修三知识点1
总体和样本
①在统计学中,把研究对象的全体叫做总体。
②把每个研究对象叫做个体。
③把总体中个体的总数叫做总体容量。
④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,x-x研究,我们称它为样本.其中个体的个数称为样本容量。
简单随机抽样
也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随。
机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础,高三。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
简单随机抽样常用的方法
①抽签法
②随机数表法
③计算机模拟法
④使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:
①总体变异情况;
②允许误差范围;
③概率保证程度。
抽签法
①给调查对象群体中的每一个对象编号;
②准备抽签的工具,实施抽签;
③对样本中的每一个个体进行测量或调查。
拓展阅读:高二数学学习方法
一、提高听课的效率是关键
课前预习能提高听课的.针对性。预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习还可以培养自己的自学能力。其次就是听课要全神贯注。
二、做好复习和总结工作
做好及时的复习。课完课的当天,必须做好当天的复习。复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习,然后打开笔记与书本,对照一下还有哪些没记清的,把它补起来,就使得当天上课内容巩固下来,同时也就检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。
三、指导做一定量的练习题
做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习是必要的。而对于中档题,尢其要讲究做题的效益,这就需要在做题后进行一定的“反思”,思考一下本题所用的基础知识,把它们联系起来,你就会得到更多的经验和教训,更重要的是养成善于思考的好习惯,这将大大有利于你今后的学习。
高中数学必修三知识点2
第一章 算法初步
算法与程序框图
基本算法语句
算法案例
阅读与思考 割圆术
复习参考题
第二章 统计
随机抽样
阅读与思考 一个著名的案例
阅读与思考广告中数据的可靠性
阅读与思考 如何得到敏感性问题的诚实反应
用样本估计总体
阅读与思考 生产过程中的质量控制图
变量间的相关关系
阅读与思考 相关关系的强与弱
实习作业
复习参考题
第三章 概率
随机事件的概率
阅读与思考 天气变化的认识过程
古典概型
几何概型
阅读与思考 概率与密码
复习参考题
高中数学必修三知识点
程序框图
程序框图的概念:
程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形;
程序框图的构成:
一个程序框图包括以下几部分:实现不同算_能的相对应的程序框;带箭头的流程线;程序框内必要的说明文字。
设计程序框图的步骤:
第一步,用自然语言表述算法步骤;
第二步,确定每一个算法步骤所包含的逻辑结构,并用相应的程序框图表示,得到该步骤的程序框图;
第三步,将所有步骤的程序框图用流程线连接起来,并加上终端框,得到表示整个算法的程序框图。
画程序框图的规则:
(1)使用标准的框图符号;
(2)框图一般按从上到下、从左到右的方向画;
(3)除判断框外,大多数程序框图中的程序框只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号;
(4)在图形符号内描述的语言要非常简练清楚。
几种重要的结构:
顺序结构、条件结构、循环结构。
输入语句:
在该程序中的第1行中的INPUT语句就是输入语句。这个语句的一般格式是:
其中,“提示内容”一般是提示用户输入什么样的信息。如每次运行上述程序时,依次输入-5,-4,-3,-2,-1,0,1,2,3,4,5,计算机每次都把新输入的值赋给变量“x”,并按“x”新获得的值执行下面的语句。
输出语句:
在该程序中,第3行和第4行中的PRINT语句是输出语句。它的一般格式是:
同输入语句一样,表达式前也可以有“提示内容”。
赋值语句:
用来表明赋给某一个变量一个具体的确定值的.语句。
除了输入语句,在该程序中第2行的赋值语句也可以给变量提供初值。它的一般格式是:
赋值语句中的“=”叫做赋值号。
算法语句的作用:
输入语句的作用:输入信息。
输出语句的作用:输出信息。
赋值语句的作用:先计算出赋值号右边表达式的值,然后把这个值赋给赋值号左边的变量,使该变量的值等于表达式的值。
高中数学必修三知识点3
一.随机事件的概率和概率的意义
1.基本概念:
(1)必然事件:在条件S下,必然事件称为相对于条件S的必然事件;
(2)不可能事件:在条件S下,不会发生的事件称为相对于条件S的不可能事件;
(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;
(4)随机事件:在条件S下可能或不可能发生的事件,称为相对于条件S的随机事件;
(5)频率和频率:在相同条件下重复n次试验,观察事件A是否出现,称事件A在n次试验中出现的次数nA事件A的频率;给定的随机事件A,如果事件A的频率随着试验次数的增加而增加fn(A)在一定常数上稳定,并记录这个常数P(A),被称为事件A的概率。
(6)频率与概率的区别与联系:随机事件的频率是指事件的频率nA与试验总次数n的比值具有一定的稳定性,总是在常数附近摆动,随着试验次数的增加,摆动范围越来越小。我们称这个常数为随机事件的概率,它反映了随机事件的可能性。在大量重复试验的前提下,频率可以近似地作为事件的概率
二.概率的基本性质
1.基本概念:
(1)事件包括、并发、交付、相等事件
(2)若A∩B即不可能的事件A∩B=ф,事件A和事件B互斥;
(3)若A∩B为不可能的事件,A∪B事件A和事件B是必然事件;
(4)事件A和B互斥时,满足加法公式:P(A∪B)=P(A) P(B);若事件A与B对立事件,则A∪B所以
P(A∪B)=P(A) P(B)=1,于是有P(A)=1—P(B)
2.概率的基本性质:
1)必然事件概率为1,不可能事件概率为0,所以0≤P(A)≤1;
2)事件A和B互斥时,满足加法公式:P(A∪B)=P(A) P(B);
3)事件A和B对立事件,则A∪B所以P(A∪B)=P(A) P(B)=1,于是有P(A)=1—P(B);
4)互斥事件与对立事件的区别和联系,是指事件A和事件B在一次实验中不会同时发生,包括三种不同的情况:(1)事件A和事件B不发生;
(2)事件A不发生,事件B发生;
(3)事件A和事件B同时不发生,对立事件是指事件A和事件B只发生一次,包括两种情况;
(1)事件AB不发生;
(2)事件B事件A不发生,对立事件互斥事件的特殊情况。
三.产生古典概型和随机数
(1)古典概述的`使用条件:试验结果的有限性和所有结果的可能性。
(2)解决古典概型问题的步骤;①找出基本事件总数;
②求出事件A中包含的基本事件数
四.产生几何概型和均匀随机数
基本概念:(1)几何概率模型:如果每个事件的概率仅与事件区域的长度(面积或体积)成比例,则称为几何概率模型;
(2)几何概率公式;
(3)几何概型的特点:1)试验中可能有无限多个结果(基本事件);
2)每个基本事件的可能性相等.
高中数学必修三知识点4
1.辗转相除法是寻求公约数的一种方法。这种算法是欧几里得在公元前年左右提出的,因此也被称为欧几里得算法.
2.所谓辗转相法,就是用较大的数字除以给定的两个数字较小的数字.如果余数不为零,则将较小的数和余数构成新的一对数,继续上述除法,直到大数被小数除法,则此时的除数为原两个数的公约数.
3.更相减损是一种寻求两数公约数的`方法.其基本过程是:对于给定的两个数字,用较大的数字减去较小的数字,然后将收益差与较小的数字进行比较,并用较大的数字减少数字,继续操作,直到收益数相等,这个数字是所需的公约数.
4.秦九韶算法是计算一元二次多项值的一种方法。
5.常用的排序方法是直接插入排序和冒泡排序。
6.进位系统是人们为方便计数和操作而约定的记数系统.满进一是k进制,进制的基数是k.
7.将进制数化为十进制数的方法是先将进制数写成数字与k的乘积之和,然后根据十进制数的操作规则计算结果。
8.将十进制数化为进制数的方法是:k取余法.也就是说,用k连续去除十进制数或收入的商,直到商为零,然后将每次收入的余数倒成一个数,即相应的进制数。
高中数学必修三知识点5
一、直线与方程高考考试内容及考试要求:
考试内容:
1.直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式;
2.两条直线平行与垂直的条件;两条直线的交角;点到直线的距离;
考试要求:
1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程;
2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系;
二、直线与方程
课标要求:
1.在平面直角坐标系中,结合具体图形,探索确定直线位置的`几何要素;
2.理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;
3.根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;
4.会用代数的方法解决直线的有关问题,包括求两直线的交点,判断两条直线的位置关系,求两点间的距离、点到直线的距离以及两条平行线之间的距离等。
要点精讲:
1.直线的倾斜角:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角。特别地,当直线l与x轴平行或重合时,规定α= 0°.
倾斜角α的取值范围:0°≤α<180°. 当直线l与x轴垂直时, α= 90°.
2.直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k = tanα
(1)当直线l与x轴平行或重合时,α=0°,k = tan0°=0;
(2)当直线l与x轴垂直时,α= 90°,k 不存在。
由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在。
3.过两点p1(x1,y1),p2(x2,y2)(x1≠x2)的直线的斜率公式:
(若x1=x2,则直线p1p2的斜率不存在,此时直线的倾斜角为90°)。
4.两条直线的平行与垂直的判定
(1)若l1,l2均存在斜率且不重合:
①;②
注: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立。
(2)
若A1、A2、B1、B2都不为零。
注意:若A2或B2中含有字母,应注意讨论字母=0与0的情况。
两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组成的方程组的解的个数。
5.直线方程的五种形式
确定直线方程需要有两个互相独立的条件,确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围。
直线的点斜式与斜截式不能表示斜率不存在(垂直于x 轴)的直线;两点式不能表示平行或重合两坐标轴的直线;截距式不能表示平行或重合两坐标轴的直线及过原点的直线。
6.直线的交点坐标与距离公式
(1)两直线的交点坐标
一般地,将两条直线的方程联立,得方程组
若方程组有唯一解,则两条直线相交,解即为交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行。
(2)两点间距离
两点P1(x1,y1),P2(x2,y2)间的距离公式
特别地:轴,则、轴,则
(3)点到直线的距离公式
点到直线的距离为:
(4)两平行线间的距离公式:
若,则:
注意点:x,y对应项系数应相等。
高中数学必修三知识点6
(1)指数函数的定义域是所有实数的集合,前提是a大于0。如果a不大于0,函数的定义域必然没有连续的范围,所以我们不考虑。
(2)指数函数的值域于0的实数集合。
(3)函数图形下凹。
(4)a如果大于1,则指数函数单调增加;a小于1大于0的,单调递减。
(5)可以看到一个明显的规律,就是当a从0趋于无限大的过程(当然不能等于0)时,函数单调递减函数的位置接近Y轴和X轴的正半轴,趋于Y轴的正半轴和X轴的负半轴的单调递增函数。水平直线y=一是从递减到递增的'过渡位置。
(6)函数总是在某个方向上无限倾向于X轴,永不相交。
(7)函数总是通过(0,1)。
(8)显然指数函数是无限的。
奇偶性
定义
一般来说,函数f(x)
(1)函数定义域中的任何一个x,都有f(-x)=-f(x),那么函数f(x)叫奇函数。
(2)函数定义域中的任何一个x,都有f(-x)=f(x),那么函数f(x)称为偶函数。
(3)函数定义域中的任何一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,然后函数f(x)既奇函数又偶函数,称为既奇又偶函数。
(4)函数定义域中的任何一个x,f(-x)=-f(x)与f(-x)=f(x)如果不能建立函数,那么函数就无法建立f(x)既不是奇函数也不是偶函数,称为非奇非偶函数。
高中数学必修三知识点7
一、集合有关概念
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:
1.元素的确定性;
2.元素的互异性;
3.元素的无序性
说明:
(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
2.集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集N_或N+整数集Z有理数集Q实数集R
关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A
列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的'元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}
②数学式子描述法:例:不等式x-3>2的'解集是{x?Rx-3>2}或{x x-3>2}
4、集合的分类:
1.有限集含有有限个元素的集合
2.无限集含有无限个元素的集合
3.空集不含任何元素的集合例:{x x2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2.“相等”关系(5≥5,且5≤5,则5=5)
实例:设A={x x2-1=0}B={-1,1}“元素相同”
结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
①任何一个集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)
③如果AíB,BíC,那么AíC
④如果AíB同时BíA那么A=B
3.不含任何元素的集合叫做空集,记为Φ
数学知识点顺口溜
排列与组合
分步则乘分类加,欲邻需捆欲隔插;
有序则排无序组,正难则反排除它。
元素重复连乘法,特元特位你先拿;
平均分组阶乘除,多元少位我当家。
二项式定理
二项乘方知多少,万里源头通项找;
展开三定项指系,组合系数杨辉角。
整除证明底变妙,二项求和特值巧;
两端对称谁最大?主峰一览众山小。
概率与统计
概率统计同根生,随机发生等可能;
互斥事件一枝秀,相互独立同时争。
样本总体抽样审,独立重复二项分;
随机变量分布列,期望方差论伪真。
数学思维方法
比较思想方法
比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
符号化思想方法
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。
极限思想方法
事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。
【高中数学必修三知识点】相关文章:
高中数学高考必修知识点总结10-25
高中数学必修教学反思12-05
高中英语必修三知识点总结06-24
高中数学必修优秀教学设计04-13
高中数学必修五教学设计09-16
高中语文必修一至必修五知识点10-21
高中数学必修五教学设计3篇10-29
最新高中数学必修一全套教案12-26
高中数学数列知识点07-05
高中数学圆的知识点11-04