有关高中数学说课稿汇编八篇
作为一名老师,就难以避免地要准备说课稿,说课稿有助于顺利而有效地开展教学活动。那么大家知道正规的说课稿是怎么写的吗?下面是小编为大家收集的高中数学说课稿8篇,仅供参考,欢迎大家阅读。

高中数学说课稿 篇1
一、说教材:
1、地位、作用和特点:
《 》是高中数学课本第 册( 修)的第 章“ ”的第 节内容,高中数学课本说课稿。
本节是在学习了 之后编排的。通过本节课的学习,既可以对 的知识进一步巩固和深化,又可以为后面学习 打下基础,所以
是本章的重要内容。此外,《 》的知识与我们日常生活、生产、科学研究 有着密切的联系,因此学习这部分有着广泛的现实意义。本节的特点之一是;
特点之二是: 。
教学目标:
根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:
(1)知识目标:A、B、C
(2)能力目标:A、B、C
(3)德育目标:A、B
教学的重点和难点:
(1)教学重点:
(2)教学难点:
二、说教法:
基于上面的教材分析,我根据自己对研究性学习“启发式”教学模式和新课程改革的理论认识,结合本校学生实际,主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得最佳效果。另外还注意获得和交换信息渠道的综合、教学手段的综合和课堂内外的综合。并且在整个教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学过程真正成为学生的学习过程,以思维教学代替单纯的记忆教学。三是注重渗透数学思考方法(联想法、类比法、数形结合等一般科学方法)。让学生在探索学习知识的过程中,领会常见数学思想方法,培养学生的探索能力和创造性素质。四是注意在探究问题时留给学生充分的时间,以利于开放学生的思维。当然这就应在处理教学内容时能够做到叶老师所说“教就是为了不教”。因此,拟对本节课设计如下教学程序:
导入新课 新课教学
反馈发展
三、说学法:
学生学习的过程实际上就是学生主动获取、整理、贮存、运用知识和获得学习能力的过程,因此,我觉得在教学中,指导学生学习时,应尽量避免单纯地、直露地向学生灌输某种学习方法。有效的能被学生接受的学法指导应是渗透在教学过程中进行的,是通过优化教学程序来增强学法指导的目的性和实效性。在本节课的教学中主要渗透以下几个方面的学法指导。
1、培养学生学会通过自学、观察、实验等方法获取相关知识,使学生在探索研究过程中分析、归纳、推理能力得到提高。
本节教师通过列举具体事例来进行分析,归纳出 ,并依
据此知识与具体事例结合、推导出 ,这正是一个分析和推理的全过程。
2、让学生亲自经历运用科学方法探索的过程。 主要是努力创设应用科学方法探索、解决问题情境,让学生在探索中体会科学方法,如在讲授 时,可通过
演示,创设探索 规律的情境,引导学生以可靠的事实为基础,经过抽象思维揭示内在规律,从而使学生领悟到把可靠的事实和深刻的理论思维结合起来的特点。
3、让学生在探索性实验中自己摸索方法,观察和分析现象,从而发现“新”的问题或探索出“新”的规律。从而培养学生的发散思维和收敛思维能力,激发学生的创造动力。在实践中要尽可能让学生多动脑、多动手、多观察、多交流、多分析;老师要给学生多点拨、多启发、多激励,不断地寻找学生思维和操作上的闪光点,及时总结和推广。
4、在指导学生解决问题时,引导学生通过比较、猜测、尝试、质疑、发现等探究环节选择合适的概念、规律和解决问题方法,从而克服思维定势的`消极影响,促进知识的正向迁移。如教师引导学生对比中,蕴含的本质差异,从而摆脱知识迁移的负面影响。这样,既有利于学生养成认真分析过程、善于比较的好习惯,又有利于培养学生通过现象发掘知识内在本质的能力。
四、教学过程:
(一)、课题引入:
教师创设问题情景(创设情景:A、教师演示实验。B、使用多媒体模拟一些比较有趣、与生活实践比较有关的事例,教案《高中数学课本说课稿》。C、讲述数学科学史上的有关情况。)激发学生的探究欲望,引导学生提出接下去要研究的问题。
(二)、新课教学:
1、针对上面提出的问题,设计学生动手实践,让学生通过动手探索有关的知识,并引导学生进行交流、讨论得出新知,并进一步提出下面的问题。
2、组织学生进行新问题的实验方法设计—这时在设计上最好是有对比性、数学方法性的设计实验,指导学生实验、通过多媒体的辅助,显示学生的实验数据,模拟强化出实验情况,由学生分析比较,归纳总结出知识的结构。
(三)、实施反馈:
1、课堂反馈,迁移知识(最好迁移到与生活有关的例子)。让学生分析有关的问题,实现知识的升华、实现学生的再次创新。
2、课后反馈,延续创新。通过课后练习,学生互改作业,课后研实验,实现课堂内外的综合,实现创新精神的延续。
五、板书设计:
在教学中我把黑板分为三部分,把知识要点写在左侧,中间知识推导过程,右边实例应用。
六、说课综述:
以上是我对《 》这节教材的认识和对教学过程的设计。在整个课堂中,我引导学生回顾前面学过的 知识,并把它运用到对
的认识,使学生的认知活动逐步深化,既掌握了知识,又学会了方法。
总之,对课堂的设计,我始终在努力贯彻以教师为主导,以学生为主体,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力、应用知识解决实际问题的能力和创造能力为指导思想。并且能从各种实际出发,充分利用各种教学手段来激发学生的学习兴趣,体现了对学生创新意识的培养。
高中数学说课稿 篇2
各位老师:
大家好!
我叫***,来自**。我说课的题目是《简单随机抽样》,内容选自于新课程人教A版必修3第二章第一节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、和教学过程分析等四大方面来阐述我对这节课的分析和设计:
一、教材分析
1.教材所处的地位和作用
"简单随机抽样"是"随机抽样"的基础,"随机抽样"又是"统计学"的基础,因此,在"统计学"中,"简单随机抽样"是基础的基础。在初中学生已学过相关概念,如"抽样""总体"、"个体"、"样本"、"样本容量"等,具有一定基础,新教材把"统计"这部分内容编入必修部分,突出了统计在日常生活中的应用,体现它在中学数学中的地位,但同时也给学生学习增加了难度。
2教学的重点和难点
重点:掌握简单随机抽样常见的两种方法(抽签法、随机数表法)
难点:理解简单随机抽样的科学性,以及由此推断结论的可靠性
二、教学目标分析
1.知识与技能目标:
正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;
2.过程与方法目标:
(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;
(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
3.情感,态度和价值观目标
通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性
三、教学方法与手段分析
为了充分让学生自己分析、判断、自主学习、合作交流。因此,我采用讨论发现法教学,并对学生渗透"从特殊到一般"的学习方法,由于本节课内容实例多,信息容量大,文字多,我采用多媒体辅助教学,节省时间,提高教学效率,另外采用这种形式也可强化学生感观刺激,也能大大提高学生的学习兴趣。
四、教学过程分析
(一)设置情境,提出问题
例1:请问下列调查是"普查"还是"抽样"调查?
A、一锅水饺的味道B、旅客上飞机前的安全检查
c、一批炮弹的杀伤半径D、一批彩电的质量情况
E、美国总统的民意支持率
学生讨论后,教师指出生活中处处有"抽样"
「设计意图」生活中处处有"抽样"调查,明确学习"抽样"的必要性。
(二)主动探究,构建新知
例2:语文老师为了了解某班同学对某首诗的背诵情况,应采用下列哪种抽查方式?为什么?
A、在班级12名班委名单中逐个抽查5位同学进行背诵
B、在班级45名同学中逐一抽查10位同学进行背诵
先让学生分析、选择B后,师生一起归纳其特征:
(1)不放回逐一抽样,
(2)抽样有代表性(个体被抽到可能性相等),学生体验B种抽样的科学性后,教师指出这是简单随机抽样,并复习初中讲过的有关概念,最后教师补充板书课题--(简单随机)抽样及其定义。
「设计意图」例2从正面分析简单随机抽样的科学性、公平性,突出"等可能性"特征。这是突破教学难点的重要环节之一。
例3我们班有44名学生,现从中抽出5名学生去参加学生座谈会,要使每名学生的机会均等,我们应该怎么做?谈谈你的想法。
先让学生独立思考,然后分小组合作学习,最后各小组推荐一位同学发言,最后师生一起归纳"抽签法"步骤:
(1)编号制签
(2)搅拌均匀
(3)逐个不放回抽取n次。教师板书上面步骤。
「设计意图」在自主探究,合作交流中构建新知,体验"抽签法"的公平性,从而突破难点,突出重点。
请一位同学说说例2采用"抽签法"的实施步骤。
「设计意图」
1、反馈练习,落实知识点,突出重点。
2、体会"抽签法"具有"简单、易行"的优点。
〈屏幕出示〉
例4、假设我们要考察某公司生产的500克袋装牛奶的.质量是否达标,现从800袋牛奶中抽取60袋进行检验
提问:这道题适合用抽签法吗?
让学生进行思考,分析抽签法的局限性,从而引入随机数表法。教师出示一份随机数表,并介绍随机数表,强调数表上的数字都是随机的,各个数字出现的可能性均等,结合上例让学生讨论随机数表法的步骤,最后师生一起归纳步骤:
(1)编号
(2)在随机数表上确定起始位置
(3)取数。教师板书上面步骤。
请一位同学说说例2采用"随机数表法"的实施步骤。
「设计意图」
1、体会随机数表法的科学性
2、体会随机数表法的优越性:避免制签、搅拌。
3、反馈练习,落实知识点,突出重点。
㈢课堂小结:
1.简单随机抽样及其两种方法
2.两种方法的操作步骤
(采用问答形式)
「设计意图」通过小结使学生们对知识有一个系统的认识,突出重点,抓住关键,培养概括能力。
㈣布置作业
课本练习2、3
[设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。
高中数学说课稿 篇3
函数的单调性
今天我说课的题目是《函数的单调性》,下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、教学过程五方面逐一加以分析和说明。
一、说教材
1、教材的地位和作用
本节内容选自北师大版高中数学必修1,第二章第3节。函数是高中数学的课程,它是描述事物运动变化的模型,而函数的单调性是函数的一大特征,它为我们之后的学习奠定重要基础。
2、学情分析
本节课的学生是高一学生,他们在初中阶段,通过一次函数、二次函数、反比例函数的学习已经对函数的增减性有了初步的感性认识。在高中阶段,用符号语言刻画图形语言,用定量分析解释定性结果,有利于培养学生的理性思维,为后续函数的学习作准备,也为利用倒数研究单调性的相关知识奠定了基础。
教学目标分析
基于以上对教材和学情的分析以及新课标教学理念,我将教学目标分为以下三个部分:
1.知识与技能(1)理解函数的单调性和单调函数的意义;
(2)会判断和证明简单函数的单调性。
2.过程与方法
(1)培养从概念出发,进一步研究性质的意识及能力;
(2)体会数形结合、分类讨论的数学思想。
3.情感态度与价值观
由合适的例子引发学生探求数学知识的欲望,突出学生的主观能动性,激发学生学习数学的兴趣。
三、教学重难点分析
通过以上对教材和学生的分析以及教学目标,我将本节课的重难点
重点:
函数单调性的概念,判断和证明简单函数的单调性。
难点:
1.函数单调性概念的认知
(1)自然语言到符号语言的转化;
(2)常量到变量的转化。
2.应用定义证明单调性的代数推理论证。
四、教法与学法分析
1、教法分析
基于以上对教材、学情的分析以及新课标的教学理念,本节课我采用启发式教学、多媒体辅助教学和讨论法。学生可以在多媒体中感受到数学在生活中的应用,启发式教学和讨论法发散学生思维,培养学生善于思考的能力。
2、学法分析
新课改理念告诉我们,学生不仅要学知识,更重要的是要学会怎样学习,为终生学习奠定扎实的基础。所以本节课我将引导学生通过合作交流、自主探索的方法理解函数的单调性及特征。
五、教学过程
为了更好的实现本课的三维目标,并突破重难点,我设计以下五个环节来进行我的教学。
(一)知识导入
温故而知新,我将先从之前学习的知识引入,给出一些函数,比如y=x、y=-x、y=|x|,让学生作出这些函数的图像,然后让学生讨论这些函数图像是上升的还是下降的,由此引入到我的新课。在这个过程中不仅可以检查学生掌握基本初等函数图像的情况,而且符合学生的认知结构,通过学生自主探究,从知识产生、发展的过程中构建新概念,有利于激发学生的思维和学习的积极主动性。
(二)讲授新课
1.问题:分别做出函数y=x2,y=x+2的图像,指出上面的函数图象在哪个区间是上升的,在哪个区间是下降的?
通过学生熟悉的图像,及时引导学生观察,函数图像上A点的.运动情况,引导学生能用自然语言描述出,随着x增大时图像变化规律。让学生大胆的去说,老师逐步修正、完善学生的说法,最后给出正确答案。
2.观察函数y=x2随自变量x变化的情况,设置启发式问题:
(1)在y轴的右侧部分图象具有什么特点?
(2)如果在y轴右侧部分取两个点(x1,y1),(x2,y2),当x1 (3)如何用数学符号语言来描述这个规律? 教师补充:这时我们就说函数y=x2在(0,+∞)上是增函数。 (4)反过来,如果y=f(x)在(0,+∞)上是增函数,我们能不能得到自变量与函数值的变化规律呢? 类似地分析图象在y轴的左侧部分。 通过对以上问题的分析,从正、反两方面领会函数单调性。师生共同总结出单调增函数的定义,并解读定义中的关键词,如:区间内,任意,当x1 仿照单调增函数定义,由学生说出单调减函数的定义。 教师总结归纳单调性和单调区间的定义。注意强调:函数的单调性是函数在定义域某个区间上的局部性质,也就是说,一个函数在不同的区间上可以有不同的单调性。 (我将给出函数y=x2,并画出这个函数的图像,让学生观察函数图像的特点,让他们描述函数图像的增减性,慢慢得到函数单调性的概念。在这个过程中,学生把对图像的感性认识转化为了数学关系,这种从特殊到一般的学习过程有利于学生对概念的理解) (三)巩固练习 1练习1:说出函数f(x)=的单调区间,并指明在该区间上的单调性。x 练习2:练习2:判断下列说法是否正确 ①定义在R上的函数f(x)满足f(2)>f(1),则函数是R上的增函数。 ②定义在R上的函数f(x)满足f(2)>f(1),则函数是R上不是减函数。 1③已知函数y=,因为f(-1) 1我将给出一些具体的函数,如y=,f(x)=3x+2让学生说出函数的单调区间,并指明在该区间x 上的单调性。通过这种练习的方式,帮助学生巩固对知识的掌握。 (四)归纳总结 我先让学生进行小结,函数单调性定义,判断函数单调性的方法(图像、定义),然后教师进行补充,在这样一个过程中既有利于学生巩固知识,也有利于教师对学生的学习情况有一定的了解,为下一节课的教学过程做好准备。 (五)布置作业 必做题:习题2-3A组第2,4,5题。 选做题:习题2-3B组第2题。 新课程理念告诉我们,不同的人在数学上可以获得不同的发展,因此要设计不同程度要求的习题。 二次函数的图像说课稿 今天我说课的题目是《二次函数的图像》,下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计五方面逐一加以分析和说明。 一、教材分析 教材的地位和作用 本节内容选自北师大版高中数学必修1,第二章第4.1节。二次函数的图像在教材中起着承上启下的作用。 学情分析 本节课的学生是高一学生,他们在初中的时候已经学习过有关内容,为本节课的学习打下了基础,另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图像由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的能力。 二、教学目标分析 基于以上对教材和学情的分析以及新课标教学理念,我将教学目标分为以下三个部分: 1.知识与技能 理解二次函数中参数a,b,c,h,k对其图像的影响; 2.过程与方法 通过体验对二次函数图像平移的研究方法,能迁移到其他函数图像的研究。 3.情感态度与价值观 通过本节的学习,进一步体会数形结合思想的作用,感受到数学中数与形的辩证统一。 三、教学重难点分析 通过以上对教材和学生的分析以及教学目标,我将本节课的重难点确定如下 重点: 二次函数图像的平移变换规律及应用。 难点: 探索平移对函数解析式的影响及如何利用平移变换规律求函数解析式,并能把平移变换规律迁移到其他函数。 四、教法与学法分析 1、教法分析 基于以上对教材、学情的分析以及新课改的要求,本节课我采用启发式教学、多媒体辅助教学和讨论法。学生可以在多媒体中感受到数学在生活中的应用,启发式教学和讨论法发散学生思维,培养学生善于思考的能力。 2、学法分析 新课改理念告诉我们,学生不仅要学知识,更重要的是要学会怎样学习,为终生学习奠定扎实的基础。所以本节课我将引导学生通过合作交流、自主探索的方法进行学习。 五、教学过程 为了更好的实现本课的三维目标,并突破重难点,我将设计以下五个环节来进行我的教学。 (1)知识导入 温故而知新,我将先从之前学习的知识引入,给出一些函数,比如y=x2、y=2x2,让学生作出这些函数的图像,然后让学生比较这些函数图像的相同点和不同点,由此引入我的新课。一方面让学生总结复习已有知识,为后面的学习做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的'快乐体验。 (2)讲授新课 例1:画出函数y=2x2,y=2(x+1)2,y=2(x+1)2+3的图像 让学生画出他们的图像并观察函数图像的特点,再让学生与多媒体课件展示的图像进行对比,得出结论:若二次函数的解析式为y=ax2+bx+c,先将其化成y=a(x+h)2+k的形式,从而判断出y=ax2+bx+c是如何由y=ax2变换得到的。 前面的练习和例题,基本涵盖了二次函数图像平移变换的各种情况,启发并引导了学生将实例的结论进行总结,得出y=x2到y=ax2,y=ax2到y=a(x+h)2+k,y=ax2到y=ax2+bx+c(其中,a均不为0)的图像变化过程,即a>0开口向上,a<0开口向下;h正左移,h负右移;k正上移,k负下移。在这个过程中,学生把对图像的感性认识转化为了数学关系,这种从特殊到一般的学习过程有利于学生对概念的理解, (3)巩固练习 我将组织学生进行练习,完成课本44页1-3题。通过这种练习的方式,帮助学生巩固和加深二次函数中参数对图像的影响。 (4)归纳总结 我先让学生进行小结,然后教师进行补充,在这样一个过程中既有利于学生巩固知识,也有利于教师对学生的学习情况有一定的了解,可以进行适当反思,为下一节课的教学过程做好准备。 (5)布置作业 略 一、教学目标 1.掌握任意角的正弦、余弦、正切函数的定义(包括定义域、正负符号判断);了解任意角的余切、正割、余割函数的定义. 2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概念的产生、发展过程.领悟直角坐标系的工具功能,丰富数形结合的经验. 3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的辩证唯物主义世界观. 4.培养学生求真务实、实事求是的科学态度. 二、重点、难点、关键 重点:任意角的正弦、余弦、正切函数的定义、定义域、(正负)符号判断法. 难点:把三角函数理解为以实数为自变量的函数. 关键:如何想到建立直角坐标系;六个比值的确定性(α确定,比值也随之确定)与依赖性(比值随着α的变化而变化). 三、教学理念和方法 教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程. 根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用"启发探索、讲练结合"的方法组织教学. 四、教学过程 [执教线索: 回想再认:函数的概念、锐角三角函数定义(锐角三角形边角关系)--问题情境:能推广到任意角吗?--它山之石:建立直角坐标系(为何?)--优化认知:用直角坐标系研究锐角三角函数--探索发展:对任意角研究六个比值(与角之间的关系:确定性、依赖性,满足函数定义吗?)--自主定义:任意角三角函数定义--登高望远:三角函数的要素分析(对应法则、定义域、值域与正负符号判定)--例题与练习--回顾小结--布置作业] (一)复习引入、回想再认 开门见山,面对全体学生提问: 在初中我们初步学习了锐角三角函数,前几节课,我们把锐角推广到了任意角,学习了角度制和弧度制,这节课该研究什么呢? 探索任意角的三角函数(板书课题),请同学们回想,再明确一下: (情景1)什么叫函数?或者说函数是怎样定义的? 让学生回想后再点名回答,投影显示规范的定义,教师根据回答情况进行修正、强调: 传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,x叫做自变量,自变量x的取值范围叫做函数的定义域. 现代定义:设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数,在集合B中都有唯一确定的数f(x)和它对应,那么就称映射?:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A,其中x叫自变量,自变量x的取值范围A叫做函数的定义域. 设计意图: 函数和三角函数是一般和特殊的关系,是共性和个性的关系,学生已经学习了函数的概念,因此对三角函数的学习就是一个从一般到特殊的演绎的过程,也是以具体函数丰富函数概念的过程.教学经验表明:学生对函数两种定义的记忆是有一定困难的,容易遗忘,此处让学生对函数概念进行回想再认,目的在于明确函数概念的本质,为演绎学习任意角三角函数概念作好知识和认知准备. (情景2)我们在初中通过锐角三角形的边角关系,学习了锐角的正弦、余弦、正切等三个三角函数.请回想:这三个三角函数分别是怎样规定的? 学生口述后再投影展示,教师再根据投影进行强调: 设计意图: 学生在初中学习了锐角的三角函数概念,现在学习任意角的.三角函数,又是一种推广和拓展的过程(类似于从有理数到实数的扩展).温故知新,要让学生体会知识的产生、发展过程,就要从源头上开始,从学生现有认知状况开始,对锐角三角函数的复习就必不可少. (二)引伸铺垫、创设情景 (情景3)我们已经把锐角推广到了任意角,锐角的三角函数概念也能推广到任意角吗?试试看,可以独立思考和探索,也可以互相讨论! 留时间让学生独立思考或自由讨论,教师参与讨论或巡回对学困生作启发引导. 能推广吗?怎样推广?针对刚才的问题点名让学生回答.用角的对边、临边、斜边比值的说法显然是受到阻碍了,由于4.1节已经以直角坐标系为工具来研究任意角了,学生一般会想到(否则教师进行提示)继续用直角坐标系来研究任意角的三角函数. 设计意图: 从学生现有知识水平和认知能力出发,创设问题情景,让学生产生认知冲突,进行必要的启发,将学生思维引上自主探索、合作交流的"再创造"征程. 教师对学生回答情况进行点评后布置任务情景:请同学们用直角坐标系重新研究锐角三角函数定义! 师生共做(学生口述,教师板书图形和比值): 把锐角α安装(如何安装?角的顶点与原点重合,角的始边与x轴非负半轴重合)在直角坐标系中,在角α终边上任取一点P,作Pm⊥x轴于m,构造一个RtΔomP,则∠moP=α(锐角),设P(x,y)(x>0、y>0),α的临边om=x、对边mP=y,斜边长|oP∣=r. 根据锐角三角函数定义用x、y、r列出锐角α的正弦、余弦、正切三个比值,并补充对应列出三个倒数比值: 设计意图: 此处做法简单,思想重要.为了顺利实现推广,可以构建中间桥梁或公共载体,使之既与初中的定义一致,又能自然地迁移到任意角的情形.由于前一节已经以直角坐标系为工具来研究任意角了,学生自然能想到仍然以直角坐标系为工具来研究任意角的三角函数.初中以直角三角形边角关系来定义锐角三角函数,现在要用坐标系来研究,探索的结论既要满足任意角的情形,又要包容初中锐角三角函数定义.这是一个认识的飞跃,是理解任意角三角函数概念的关键之一,也是数学发现的重要思想和方法,属于策略性知识,能够形成迁移能力,为学生在以后学习中对某些知识进行推广拓展奠定了基础(譬如从平面向量到空间向量的扩展,从实数到复数的扩展等). (情景4)各个比值与角之间有怎样的关系?比值是角的函数吗? 追问:锐角α大小发生变化时,比值会改变吗? 先让学生想象思考,作出主观判断,再用几何画板动画演示,同时作好解释说明:保持r不变,让P绕原点o旋转即α在锐角范围内变化,六个比值随之变化的直观形象。结论是:比值随α的变化而变化. 引导学生观察图3,联系相似三角形知识, 探索发现: 对于锐角α的每一个确定值,六个比值都是 确定的,不会随P在终边上的移动而变化. 得出结论(强调):当α为锐角时,六个比值随α的变化而变化;但对于锐角α的每一个确定值,六个比值都是确定的,不会随P在终边上的移动而变化.所以,六个比值分别是以角α为自变量、以比值为函数值的函数. 设计意图: 初中学生对函数理解较肤浅,这里在学生思维的最近发展区进一步研究初中学过的锐角三角函数,在思维上更上了一个层次,扣准函数概念的内涵,突出变量之间的依赖关系或对应关系,是从函数知识演绎到三角函数知识的主要依据,是准确理解三角函数概念的关键,也是在认知上把三角函数知识纳入函数知识结构的关键.这样做能够使学生有效地增强函数观念. (三)分析归纳、自主定义 (情境5)能将锐角的比值情形推广到任意角α吗? 水到渠成,师生共同进行探索和推广: 对于一个任意角α,它的终边所在位置包括下列两类共八种情形(投影展示并作分析): 终边分别在四个象限的情形:终边分别在四个半轴上的情形: ; (指出:不画出角的方向,表明角具有任意性) 怎样刻画任意角的三角函数呢?研究它的六个比值: (板书)设α是一个任意角,在α终边上除原点外任意取一点P(x,y),P与原点o之间的距离记作r(r=>0),列出六个比值: α=kππ/2时,x=0,比值y/x、r/x无意义; α=kπ时,y=0,比值x/y、r/y无意义. 追问:α大小发生变化时,比值会改变吗? 先让学生想象思考,作出主观判断,再用几何画板动画演示,同时作好解释说明:使r保持不变,P绕原点o逆时针、顺时针旋转即角α变化,六个比值随之改变的直观形象。结论是:各比值随α的变化而变化. 再引导学生利用相似三角形知识,探索发现:对于任意角α的每一个确定值,六个比值都是确定的,不会随P在终边上的移动而变化. 综上得到(强调):当角α变化时,六个比值随之变化;对于确定的角α,六个比值(如果存在的话)都不会随P在角α终边上的改变而改变,六个比值是确定的(对应的多值性即诱导公式一留到下节课分析). 因此,六个比值分别是以角α为自变量、以比值为函数值的函数. 根据历史上的规定,对比值进行命名,指出英文记法和读法,记作(承前作复合板书): =sinα(正弦)=cosα(余弦)=tanα(正切) =cscα(余割)=sec(正弦)=cotα(余切) 教师强调:sinα表示sin与α的乘积吗?不是,sinα是函数记号,是一个整体,相当于函数记号f(x).其它几个三角函数也如此 投影显示图六,指导学生分析其对应关系,进一步体会其函数内涵: (图六) 指导学生识记六个比值及函数名称. 教师指出:正弦、余弦、正切、余切、正割、余割六个函数统称为三角函数,三角函数有非常丰富的知识和思想方法,我们以后主要学习正弦、余弦、正切三个函数的相关知识和方法,对于余切、正割、余割,只要同学们了解它们的定义就够了(遵循大纲要求). 引导学生进一步分析理解: 已知角的集合与实数集之间可以建立一一对应关系,对于每一个确定的实数,把它看成一个弧度数,就对应着唯一的一个角,从而分别对应着六个唯一的三角函数值.因此,(板书)三角函数可以看成是以实数为自变量的函数,这将为以后的应用带来很多方便. 设计意图: 把角的终边分别在四个象限、四条半轴上的情形全作出来,有利于对任意性的全面把握.明确比值存在与否的条件,为确定函数定义域作准备.动画演示比值与角之间的依赖性与确定性关系,深化理解三角函数内涵.引导学生在理解的基础上自主地对三角函数作出明确定义,是本节课的中心任务.由于学生刚学弧度制,对弧度制的理解有待于在以后的学习应用中逐步感悟,因此部分学生对"三角函数可以看成是以实数为自变量的函数"的理解有半信半疑之感,有待通过后续的应用加深理解. (四)探索定义域 (情景6)(1)函数概念的三要素是什么? 函数三要素:对应法则、定义域、值域. 正弦函数sinα的对应法则是什么? 正弦函数sinα的对应法则,实质上就是sinα的定义:对α的每一个确定的值,有唯一确定的比值y/r与之对应,即α→y/r=sinα. (2)布置任务情景:什么是三角函数的定义域?请求出六个三角函数的定义域,填写下表: 三角函数 sinα cosα tanα cotα cscα secα 定义域 引导学生自主探索: 如果没有特别说明,那么使解析式有意义的自变量的取值范围叫做函数的定义域,三角函数的定义域自然是指:使比值有意义的角α的取值范围. 关于sinα=y/r、cosα=x/r,对于任意角α(弧度数),r>0,y/r、x/r恒有意义,定义域都是实数集R. 对于tanα=y/x,α=kππ/2时x=0,y/x无意义,tanα的定义域是:{α|α∈R,且α≠kππ/2}.......... 教师指出:sinα、cosα、tanα的定义域必须紧扣三角函数定义在理解的基础上记熟,cotα、cscα、secα的定义域不要求记忆. (关于值域,到后面再学习). 设计意图: 定义域是函数三要素之一,研究函数必须明确定义域.指导学生根据定义自主探索确定三角函数定义域,有利于在理解的基础上记住它、应用它,也增进对三角函数概念的掌握. (五)符号判断、形象识记 (情景7)能判断三角函数值的正、负吗?试试看! 引导学生紧紧抓住三角函数定义来分析,r>0,三角函数值的符号决定于x、y值的正负,根据终边所在位置总结出形象的识记口诀: (同好得正、异号得负) sinα=y/r:上正下负横为0cosα=x/r:左负右正纵为0tanα=y/x:交叉正负 设计意图: 判断三角函数值的正负符号,是本章教材的一项重要的知识、技能要求.要引导学生抓住定义、数形结合判断和记忆三角函数值的正负符号,并总结出形象的识记口诀,这也是理解和记忆的关键. (六)练习巩固、理解记忆 1、自学例1:已知角α的终边经过点P(2,-3),求α的六个三角函数值. 要求:读完题目,思考:计算什么?需要准备什么?闭目心算,对照解答,模仿书面表达格式,巩固定义. 课堂练习: p19题1:已知角α的终边经过点P(-3,-1),求α的六个三角函数值. 要求心算,并提问中下学生检验,-------- 点评:角α终边上有无穷多个点,根据三角函数的定义,只要知道α终边上任意一个点的坐标,就可以计算这个角的三角函数值(或判断其无意义). 补充例题:已知角α的终边经过点P(x,-3),cosα=4/5,求α的其它五个三角函数值. 师生探索:已知y=-3,要求其它五个三角函数值,须知r=?,x=?.根据定义得=(方程思想),x>0,解得x=4,从而--------.解答略. 2、自学例2:求下列各角的六个三角函数值:(1)0;(2)π/2;(3)3π/2. 提问,据反馈信息作点评、修正. 师生探索:紧扣三角函数定义求解,首先要在终边上取定一点。终边在哪儿呢?取定哪一点呢?任意点、还是特殊点?要灵活,只要能够算出三角函数值,都可以。 取特殊点能使计算更简明。课堂练习:p19题2.(改编)填表: 角α(角度) 0° 90° 180° 270° 360° 角α(弧度) sinα cosα tanα 处理:要求取点用定义求解,针对计算过程提问、点评,理解巩固定义. 强调:终边在坐标轴上的角叫轴线角,如0、π/2、π、3π/2等,今后经常用到轴线角的三角函数值,要结合三角函数定义记熟这些值. 设计意图: 及时安排自学例题、自做教材练习题,一般性与特殊性相结合,进行适量的变式练习,以巩固和加深对三角函数概念的理解,通过课堂积极主动的练习活动进行思维训练,把"培养学生分析解决问题的能力"贯穿在每一节课的课堂教学始终. (七)回顾小结、建构网络 要求全体学生根据教师所提问题进行总结识记,提问检查并强调: 1.你是怎样把锐角三角函数定义推广到任意角的?或者说任意角三角函数具体是怎样定义的?(建立直角坐标系,使角的顶点与坐标原点重合,---,在终边上任意取定一点P,---) 2.你如何判断和记忆正弦、余弦、正切函数的定义域?(根据定义,------) 3.你如何记忆正弦、余弦、正切函数值的符号?(根据定义,想象坐标位置,-----) 设计意图: 遗忘的规律是先快后慢,回顾再现是记忆的重要途径,在课堂内及时总结识记主要内容是上策.此处以问题形式让学生自己归纳识记本节课的主体内容,抓住要害,人人参与,及时建构知识网络,优化知识结构,培养认知能力. (八)布置课外作业 1.书面作业:习题4.3第3、4、5题. 2.认真阅读p22"阅读材料:三角函数与欧拉",了解欧拉的生平和贡献,特别学习他对科学的挚着精神和坚忍不拔的顽强毅力!有兴趣的同学可以上网查阅欧拉的相关情况. 教学设计说明 一、对本节教材的理解 三角函数是描述周期运动现象的重要的数学模型,有非常广泛的应用. 星星之火,可以燎原. 直角三角形简单朴素的边角关系,以直角坐标系为工具进行自然地推广而得到简明的任意角的三角函数定义,紧紧扣住三角函数定义这个宝贵的源泉,自然地导出三角函数线、定义域、符号判断、值域、同角三角函数关系、多组诱导公式、多组变换公式、辅助角公式、图象和性质,本章教材就是这些内容的具体安排.定义直接用于解析几何(如直线斜率公式、极坐标、部分曲线的参数方程等),定义还是直接解决某些问题的工具,三角函数知识是物理学、高等数学、测量学、天文学的重要基础. 三角函数定义必然是学好全章内容的关键,如果学生掌握不好,将直接影响到后续内容的学习,由三角函数定义的基础性和应用的广泛性决定了本节教材的重点就是定义本身. 二、教学法加工 数学教材通常用抽象概括的形式化的数学书面语言阐述其知识和方法,教师只有通过教学法加工,始终贯彻"以学生的发展为本"的科学教育观,"将数学的学术形态转化为教育形态"(张奠宙语),引导学生积极主动地进行思考活动,直接参与体验数学知识产生发展的背景、过程,返璞归真,揭示本质,体会其中的思想和方法,学生只有这样才能真正理解掌握数学知识和方法,有效地发展智力、培养能力. 在本节教材中,三角函数定义是重点,三角函数线是难点,为了较好地突出重点和突破难点,分散重点和难点,同时兼顾例题、课堂练习的协调匹配,将不按教材顺序来进行教学,第一课时安排三角函数的定义(突出重点)、定义域、符号判断、例题1、2及p19课堂练习1、2、3,第二课时安排三角函数线、p15练习(突破难点)、诱导公式一及课本例题3、4和其它练习.本课例属第一课时. 教学经验表明,三角函数定义"简单易记",学生很容易轻视它,不少学生机械记忆、一知半解.本课例坚持"教师主导、学生主体"的原则,采用"启发探索、讲练结合"的常规教学方法,在学生的最近发展区围绕学生的学习目标设计了一系列符合学生认知规律的程序,通过多媒体辅助教学动画演示比值与角之间的依赖关系,拓展思维活动时空,力求使学生全员主动参与,积极思考,体会定义产生、发展的过程,通过思维过程来理解知识、培养能力. 将六个比值放在一起来研究,同时给出六个三角函数的定义,能够增强对比感和整体感,至于大纲对两组函数掌握与了解的不同要求,在下一步的教学中注意区分就行了. 教学中关于符号sinα、cosα、tanα的出场安排,教材首先对比值取名并给出英文记法,再研究它们与α的函数关系;另外可以先研究六个比值与α之间的函数关系,然后再对六个比值取名给出记法.后者更能突出函数内涵,揭示三角函数本质.本课例采用后者组织教学. 三、教学过程分析(见穿插在教案中的设计意图). 一、教材分析: 1.教材所处的地位和作用: 本节内容在全书和章节中的作用是:《1.3.1柱体、锥体、台体的表面积》是高中数学教材数学2第一章空间几何体3节内容。在此之前学生已学习了空间几何体的结构、三视图和直观图为基础,这为过渡到本节的学习起着铺垫作用。本节内容是在空间几何中,占据重要的地位。以及为其他学科和今后的学习打下基础。 2.教育教学目标: 根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标: 知识与能力: (1)了解柱体、锥体、台体的表面积. (2)能用公式求柱体、锥体、台体的表面积。 (3)培养学生空间想象能力和思维能力 过程与方法: 让学生经历几何体的表面积的实际求法,感知几何体的形状,培养学生对数学问题的转化化归能力。 情感、态度与价值观: 通过学习,是学生感受到几何体表面积的求解过程,激发学生探索、创新意识,增强学习积极性。 3.重点,难点以及确定依据: 本着新课程标准,在吃透教材基础上,我确立了如下的教学重点、难点 教学重点:柱,锥,台的表面积公式的推导 教学难点:柱,锥,台展开图与空间几何体的转化 二、教法分析 1.教学手段: 如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的.特点:应着重采用合作探究、小组讨论的教学方法。 2.教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的探究式讨论教学法。在学生亲自动手去给出各种几何体的表面积的计算方法,特别注重不同解决问题的方法,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。 三.学情分析 我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。 (1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散 (2)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力 最后我来具体谈谈这一堂课的教学过程: 四、教学过程分析 (1)由一段动画视频引入:丰富生动的吸引学生的注意力,调动学生学习积极性 (2)由引入得出本课新的所要探讨的问题——几何体的表面积的计算。 (3)探究问题。完全将主动权教给学生,让学生主动去探究,得到解决问题的思路,锻炼学生动手能力,解决实际问题能力。 (4)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。 (5)例题及练习,见学案。 (6)布置作业。 针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高, (7)小结。让学生总结本节课的收获。老师适时总结归纳。 开始:各位专家领导, 好! 今天我将要为大家讲的课题是 首先,我对本节教材进行一些分析 一、教材结构与内容简析 本节内容在全书及章节的地位:《 》是高中数学新教材第 册( )第 章第 节。在此之前,学生已学习了 ,这为过渡到本节的学习起着铺垫作用。本节内容是 部分,因此,在 中,占据 的地位。 数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生: 二、 教学目标 根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标: 1 基础知识目标: 2 能力训练目标: 3 创新素质目标: 4 个性品质目标: 三、 教学重点、难点、关键 本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点 重点: 通过 突出重点 难点: 通过 突破难点 关键: 下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈: 四、 教法 数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生 “知其然”而且要使学生“知其所以然”, 我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的'特点: ,应着重采用 的教学方法。即: 五、 学法 我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。 1、理论: 2、实践: 3、能力: 最后我来具体谈一谈这一堂课的教学过程: 六、 教学程序及设想 1、由 引入: 把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。 在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。 对于本题: 2、由实例得出本课新的知识点是: 3、讲解例题。 我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。在题中: 4、能力训练。 课后练习 使学生能巩固羡慕自觉运用所学知识与解题思想方法。 5、总结结论,强化认识。 知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。 6、变式延伸,进行重构。 重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。 7、板书。 8、布置作业。 针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。 结束:说课是教师面对同行和其它听众口头讲述具体课题的教学设想及其根据的新的教学研究形式。以上,我仅从说教材,说学情,说教法,说学法,说教学程序上说明了“教什么”和“怎么教”,阐明了“为什么这样教”。说课对我们大家仍是新事物,今后我也将进一步说好课,并希望各位专家领导对本堂说课提出宝贵意见。 注意时间掌握 六、注意灵活导入新知识点。 电脑课件 使用投影 根据时间进行增删 高三第一阶段复习,也称“知识篇”。在这一阶段,学生重温高一、高二所学课程,全面复习巩固各个知识点,熟练掌握基本方法和技能;然后站在全局的高度,对学过的知识产生全新认识。在高一、高二时,是以知识点为主线索,依次传授讲解的,由于后面的相关知识还没有学到,不能进行纵向联系,所以,学的知识往往是零碎和散乱,而在第一轮复习时,以章节为单位,将那些零碎的、散乱的知识点串联起来,并将他们系统化、综合化,把各个知识点融会贯通。对于普通高中的学生,第一轮复习更为重要,我们希望能做高考试题中一些基础题目,必须侧重基础,加强复习的针对性,讲求实效。 一、内容分析说明 1、本小节内容是初中学习的多项式乘法的继续,它所研究的二项式的乘方的展开式,与数学的其他部分有密切的联系: (1)二项展开式与多项式乘法有联系,本小节复习可对多项式的变形起到复习深化作用。 (2)二项式定理与概率理论中的二项分布有内在联系,利用二项式定理可得到一些组合数的恒等式,因此,本小节复习可加深知识间纵横联系,形成知识网络。 (3)二项式定理是解决某些整除性、近似计算等问题的一种方法。 2、高考中二项式定理的试题几乎年年有,多数试题的难度与课本习题相当,是容易题和中等难度的 试题,考察的题型稳定,通常以选择题或填空题出现,有时也与应用题结合在一起求某些数、式的 近似值。 二、学校情况与学生分析 (1)我校是一所镇普通高中,学生的基础不好,记忆力较差,反应速度慢,普遍感到数学难学。但大部分学生想考大学,主观上有学好数学的愿望。 (2)授课班是政治、地理班,学生听课积极性不高,听课率低(60﹪),注意力不能持久,不能连续从事某项数学活动。课堂上喜欢轻松诙谐的气氛,大部分能机械的.模仿,部分学生好记笔记。 三、教学目标 复习课二项式定理计划安排两个课时,本课是第一课时,主要复习二项展开式和通项。根据历年高考对这部分的考查情况,结合学生的特点,设定如下教学目标: 1、知识目标:(1)理解并掌握二项式定理,从项数、指数、系数、通项几个特征熟记它的展开式。 (2)会运用展开式的通项公式求展开式的特定项。 2、能力目标:(1)教给学生怎样记忆数学公式,如何提高记忆的持久性和准确性,从而优化记忆品质。记忆力是一般数学能力,是其它能力的基础。 (2)树立由一般到特殊的解决问题的意识,了解解决问题时运用的数学思想方法。 3、情感目标:通过对二项式定理的复习,使学生感觉到能掌握数学的部分内容,树立学好数学的信心。有意识地让学生演练一些历年高考试题,使学生体验到成功,在明年的高考中,他们也能得分。 四、教学过程 1、知识归纳 (1)创设情景:①同学们,还记得吗? 、 、 展开式是什么? ②学生一起回忆、老师板书。 设计意图:①提出比较容易的问题,吸引学生的注意力,组织教学。 ②为学生能回忆起二项式定理作铺垫:激活记忆,引起联想。 (2)二项式定理:①设问 展开式是什么?待学生思考后,老师板书 = C an+C an-1b1+…+C an-rbr+…+C bn(n∈N*) ②老师要求学生说出二项展开式的特征并熟记公式:共有 项;各项里a的指数从n起依次减小1,直到0为止;b的指数从0起依次增加1,直到n为止。每一项里a、b的指数和均为n。 ③巩固练习 填空 设计意图:①教给学生记忆的方法,比较分析公式的特点,记规律。 ②变用公式,熟悉公式。 (3) 展开式中各项的系数C , C , C ,… , 称为二项式系数. 展开式的通项公式Tr+1=C an-rbr , 其中r= 0,1,2,…n表示展开式中第r+1项. 2、例题讲解 例1求 的展开式的第4项的二项式系数,并求的第4项的系数。 讲解过程 设问:这里 ,要求的第4项的有关系数,如何解决? 学生思考计算,回答问题; 老师指明①当项数是4时, ,此时 ,所以第4项的二项式系数是 , ②第4项的系数与的第4项的二项式系数区别。 板书 解:展开式的第4项 所以第4项的系数为 ,二项式系数为 。 选题意图:①利用通项公式求项的系数和二项式系数;②复习指数幂运算。 例2 求 的展开式中不含的 项。 讲解过程 设问:①不含的 项是什么样的项?即这一项具有什么性质? ②问题转化为第几项是常数项,谁能看出哪一项是常数项? 师生讨论 “看不出哪一项是常数项,怎么办?” 共同探讨思路:利用通项公式,列出项数的方程,求出项数。 老师总结思路:先设第 项为不含 的项,得 ,利用这一项的指数是零,得到关于 的方程,解出 后,代回通项公式,便可得到常数项。 板书 解:设展开式的第 项为不含 项,那么 令 ,解得 ,所以展开式的第9项是不含的 项。 因此 。 选题意图:①巩固运用展开式的通项公式求展开式的特定项,形成基本技能。 ②判断第几项是常数项运用方程的思想;找到这一项的项数后,实现了转化,体现转化的数学思想。 例3求 的展开式中, 的系数。 解题思路:原式局部展开后,利用加法原理,可得到展开式中的 系数。 板书 解:由于 ,则 的展开式中 的系数为 的展开式中 的系数之和。 而 的展开式含 的项分别是第5项、第4项和第3项,则 的展开式中 的系数分别是: 。 所以 的展开式中 的系数为 例4 如果在( + )n的展开式中,前三项系数成等差数列,求展开式中的有理项. 解:展开式中前三项的系数分别为1, , , 由题意得2× =1+ ,得n=8. 设第r+1项为有理项,T =C · ·x ,则r是4的倍数,所以r=0,4,8. 有理项为T1=x4,T5= x,T9= . 3、课堂练习 1.(20xx年江苏,7)(2x+ )4的展开式中x3的系数是 A.6B.12 C.24 D.48 解析:(2x+ )4=x2(1+2 )4,在(1+2 )4中,x的系数为C ·22=24. 答案:C 2.(20xx年全国Ⅰ,5)(2x3- )7的展开式中常数项是 A.14 B.14 C.42 D.-42 解析:设(2x3- )7的展开式中的第r+1项是T =C (2x3) (- )r=C 2 · (-1)r·x , 当- +3(7-r)=0,即r=6时,它为常数项,∴C (-1)6·21=14. 答案:A 3.(20xx年湖北,文14)已知(x +x )n的展开式中各项系数的和是128,则展开式中x5的系数是_____________.(以数字作答) 解析:∵(x +x )n的展开式中各项系数和为128, ∴令x=1,即得所有项系数和为2n=128. ∴n=7.设该二项展开式中的r+1项为T =C (x ) ·(x )r=C ·x , 令 =5即r=3时,x5项的系数为C =35. 答案:35 五、课堂教学设计说明 1、这是一堂复习课,通过对例题的研究、讨论,巩固二项式定理通项公式,加深对项的系数、项的二项式系数等有关概念的理解和认识,形成求二项式展开式某些指定项的基本技能,同时,要培养学生的运算能力,逻辑思维能力,强化方程的思想和转化的思想。 2、在例题的选配上,我设计了一定梯度。第一层次是给出二项式,求指定的项,即项数已知,只需直接代入通项公式即可(例1);第二层次(例2)则需要自己创造代入的条件,先判断哪一项为所求,即先求项数,利用通项公式中指数的关系求出,此后转化为第一层次的问题。第三层次突出数学思想的渗透,例3需要变形才能求某一项的系数,恒等变形是实现转化的手段。在求每个局部展开式的某项系数时,又有分类讨论思想的指导。而例4的设计是想增加题目的综合性,求的n过程中,运用等差数列、组合数n等知识,求出后,有化归为前面的问题。 六、个人见解 一、说教材: 1. 地位及作用: “椭圆及其标准方程”是高中《解析几何》第二章第七节内容,是本书的重点内容之一,也是历年高考、会考的必考内容,是在学完求曲线方程的基础上,进一步研究椭圆的特性,以完成对圆锥曲线的全面研究,为今后的学习打好基础,因此本节内容具有承前启后的作用。 2. 教学目标: 根据《教学大纲》,《考试说明》的要求,并根据教材的具体内容和学生的实际情况,确定本节课的教学目标: (1)知识目标:掌握椭圆的定义和标准方程,以及它们的应用。 (2)能力目标: (a)培养学生灵活应用知识的能力。 (b) 培养学生全面分析问题和解决问题的能力。 (c)培养学生快速准确的运算能力。 (3)德育目标:培养学生数形结合思想,类比、分类讨论的思想以及确立从感性到理性认识的辩证唯物主义观点。 3. 重点、难点和关键点: 因为椭圆的定义和标准方程是解决与椭圆有关问题的重要依据,也是研究双曲线和抛物线的基础,因此,它是本节教材的重点;由于学生推理归纳能力较低,在推导椭圆的标准方程时涉及到根式的两次平方,并且运算也较繁,因此它是本节课的难点;坐标系建立的好坏直接影响标准方程的推导和化简,因此建立一个适当的直角坐标系是本节的关键。 二、 说教材处理 为了完成本节课的教学目标,突出重点、分散难点、根据教材的内容和学生的实际情况,对教材做以下的处理: 1.学生状况分析及对策: 2.教材内容的组织和安排: 本节教材的处理上按照人们认识事物的规律,遵循由浅入深,循序渐进,层层深入的原则组织和安排如下: (1)复习提问(2)引入新课(3)新课讲解(4)反馈练习(5)归纳总结(6)布置作业 三、 说教法和学法 1.为了充分调动学生学习的`积极性,是学生变被动学习为主动而愉快的学习,引导学生自己动手,让学生的思维活动在教师的引导下层层展开。请学生参与课堂。加强方程推导的指导,是传授知识与培养能力有机的溶为一体,为此,本节课采用“引导教学法”。 2.利用电脑所画图形的动态演示总结规律。同时利用电脑的动态演示激发学生的学习兴趣。 四、 教学过程 教学环节 3.设a(-2,0),b(2,0),三角形abp周长为10,动点p轨迹方程。 例1属基础,主要反馈学生掌握基本知识的程度。 例2可强化基本技能训练和基本知识的灵活运用。 小结 为使学生对本节内容有一个完整深刻的认识,教师引导学生从以下几个方面进行小结。 1.椭圆的定义和标准方程及其应用。 2.椭圆标准方程中a,b,c诸关系。 3.求椭圆方程常用方法和基本思路。 通过小结形成知识体系,加深对本节知识的理解培养学生的归纳总结能力,增强学生学好圆锥曲线的信心。 布置作业 (1) 77页——78页 1,2,3,79页 11 (2) 预习下节内容 巩固本节所学概念,强化基本技能训练,培养学生良好的学习习惯和品质,发现和弥补教学中的遗漏和不足。 【高中数学说课稿】相关文章: 高中数学数列说课稿07-16 高中数学说课稿11-23 高中数学说课稿09-30 高中数学说课稿范文06-17 高中数学说课稿范文09-10 高中数学《向量》说课稿范文602-25 高中数学说课稿六篇04-07 高中数学说课稿九篇04-26 精选高中数学说课稿10篇05-11 高中数学说课稿3篇05-18 篇二:高一数学必修一说课稿
高中数学说课稿 篇4
高中数学说课稿 篇5
高中数学说课稿 篇6
高中数学说课稿 篇7
高中数学说课稿 篇8