【精选】高中数学的教学设计15篇
作为一名优秀的教育工作者,总归要编写教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。写教学设计需要注意哪些格式呢?下面是小编精心整理的高中数学的教学设计,仅供参考,欢迎大家阅读。
高中数学的教学设计1
教学目标
(1)理解四种命题的概念;
(2)理解四种命题之间的相互关系,能由原命题写出其他三种形式;
(3)理解一个命题的真假与其他三个命题真假间的关系;
(4)初步掌握反证法的概念及反证法证题的基本步骤;
(5)通过对四种命题之间关系的学习,培养学生逻辑推理能力;
(6)通过对四种命题的存在性和相对性的认识,进行辩证唯物主义观点教育;
(7)培养学生用反证法简单推理的技能,从而发展学生的思维能力。
教学重点和难点
重点:四种命题之间的关系;
难点:反证法的运用。
教学过程设计
一、导入新课
【练习】
1、把下列命题改写成“若p则q”的形式:
(1)同位角相等,两直线平行;
(2)正方形的四条边相等。
2、什么叫互逆命题?上述命题的逆命题是什么?
将命题写成“若p则q”的形式,关键是找到命题的条件p与q结论。
如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互道命题。
上述命题的道命题是“若一个四边形的四条边相等,则它是正方形”和“若两条直线平行,则同位角相等”。
值得指出的是原命题和逆命题是相对的。我们也可以把逆命题当成原命题,去求它的逆命题。
3、原命题真,逆命题一定真吗?
“同位角相等,两直线平行”这个原命题真,逆命题也真。但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真。
学生活动:
口答:
(1)若同位角相等,则两直线平行;
(2)若一个四边形是正方形,则它的四条边相等。
设计意图:
通过复习旧知识,打下学习否命题、逆否命题的基础。
二、新课
【设问】命题“同位角相等,两条直线平行”除了能构成它的逆命题外,是否还可以构成其它形式的命题?
【讲述】可以将原命题的条件和结论分别否定,构成“同位角不相等,则两直线不平行”,这个命题叫原命题的否命题。
【提问】你能由原命题“正方形的.四条边相等”构成它的否命题吗?
学生活动:
口答:若一个四边形不是正方形,则它的四条边不相等。
教师活动:
【讲述】一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题。把其中一个命题叫做原命题,另一个命题叫做原命题的否命题。
若用p和q分别表示原命题的条件和结论,用┐p和┐q分别表示p和q的否定。
【板书】原命题:若p则q;
否命题:若┐p则q┐。
【提问】原命题真,否命题一定真吗?举例说明?
学生活动:
讲论后回答:
原命题“同位角相等,两直线平行”真,它的否命题“同位角不相等,两直线不平行”不真。
原命题“正方形的四条边相等”真,它的否命题“若一个四边形不是正方形,则它的四条边不相等”不真。
由此可以得原命题真,它的否命题不一定真。
设计意图:
通过设问和讨论,让学生在自己举例中研究如何由原命题构成否命题及判断它们的真假,调动学生学习的积极性。
教师活动:
【提问】命题“同位角相等,两条直线平行”除了能构成它的逆命题和否命题外,还可以不可以构成别的命题?
学生活动:
讨论后回答
【总结】可以将这个命题的条件和结论互换后再分别将新的条件和结论分别否定构成命题“两条直线不平行,则同位角不相等”,这个命题叫原命题的逆否命题。
教师活动:
【提问】原命题“正方形的四条边相等”的逆否命题是什么?
学生活动:
口答:若一个四边形的四条边不相等,则不是正方形。
教师活动:
【讲述】一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题。把其中一个命题叫做原命题,另一个命题就叫做原命题的逆否命题。
原命题是“若p则q”,则逆否命题为“若┐q则┐p。
【提问】“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?
学生活动:
讨论后回答
这两个逆否命题都真。
原命题真,逆否命题也真。
教师活动:
【提问】原命题的真假与其他三种命题的真
假有什么关系?举例加以说明?
【总结】
1、原命题为真,它的逆命题不一定为真。
2、原命题为真,它的否命题不一定为真。
3、原命题为真,它的逆否命题一定为真。
设计意图:
通过设问和讨论,让学生在自己举例中研究如何由原命题构成逆否命题及判断它们的真假,调动学生学的积极性。
教师活动总结。
PF2|2.P为等轴双曲线x2y2a2上一点, F1、F2为两焦点,O为双曲线的中心,求的|PO|取值范围。
3.在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。
4.(1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求|MA|+|MF|的最小值。
x2y211(2)已知A(,3)为一定点,F为双曲线1的右焦点,M在双曲线右支上移动,当|AM平面bcd。
变式一:空间四边形abcd中,e、f、g、h分别是边ab、bc、cd、da中点,连结ef、fg、gh、he、ac、bd请分别找出图中满足线面平行位置关系的所有情况。(共6组线面平行)
变式二:在变式一的图中如作pq?ef,使p点在线段ae上、q点在线段fc上,连结ph、qg,并继续探究图中所具有的线面平行位置关系?(在变式一的基础上增加了4组线面平行),并判断四边形efgh、pqgh分别是怎样的四边形,说明理由。
[设计意图:设计二个变式训练,目的是通过问题探究、讨论,思辨,及时巩固定理,运用定理,培养学生的识图能力与逻辑推理能力。]例2:如图,在正方体abcd—a1b1c1d1中,e、f分别是棱bc与c1d1中点,求证:ef
高中数学的教学设计2
一、概述
教材内容:等比数列的概念和通项公式的推导及简单应用 教材难点:灵活应用等比数列及通项公式解决一般问题 教材重点:等比数列的概念和通项公式
二、教学目标分析
1. 知识目标
1)
2) 掌握等比数列的定义 理解等比数列的通项公式及其推导
2.能力目标
1)学会通过实例归纳概念
2)通过学习等比数列的通项公式及其推导学会归纳假设
3)提高数学建模的能力
3、情感目标:
1)充分感受数列是反映现实生活的模型
2)体会数学是来源于现实生活并应用于现实生活
3)数学是丰富多彩的'而不是枯燥无味的
三、教学对象及学习需要分析
1、 教学对象分析:
1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。
2)对归纳假设较弱,应加强这方面教学
2、学习需要分析:
四. 教学策略选择与设计
1.课前复习
1)复习等差数列的概念及通向公式
2)复习指数函数及其图像和性质
2.情景导入
高中数学的教学设计3
一、教学目标
1、知识目标:理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的相互转换;理解对数的运算性质,形成知识技能;
2、能力目标:通过实例让学生认识对数的模型,让学生有能力去解决今后有关于对数的问题,同时让学生学会观察和动手,通过做练习,使学生感受到理论与实践的统一,锻炼学生的动手能力;
3、分析目标:通过让学生分组进行探究活动,在探究中分析各种思维的技巧,掌握对数运算的重要性质。
二、教学理念
为了调动学生学习的积极性,使学生化被动为主动,从学习中体会快乐。本节课我引导学生从实例出发,引发学生的思考,从中认识对数的模型,体会对数的必要性。在教学重难点上,我步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率。让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。
三、教法学法分析
1、教法分析
新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教法:实例引入法、开放式探究法、启发式引导法。
2、学法分析
“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:观察发现法、小组讨论法、归纳总结法。
四、教材分析
本节讲对数的概念和运算性质主要是为后面学习对数函数做准备。这在解决一些日常生活问题及科研中起着十分重要的'作用。同时,通过对数概念的学习,对培养学生对立统一、相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义。
五、教学重点与难点
重点 :(1)对数的定义;
故可以设
m?am,n?an
那么 mn?am?n
由对数的定义可以得到
logam?m,logan?n, logam?n?m?n
将m和n分别带入,那么可以得到如下结论: logam?n?logam?logan
可以以此为例,让学生在课堂上推导出如下运算性质的另外两个公式: 对数运算性质:
如果a?0,且a?1,m?0,n?0,那么:
(1)logam?n?logam?logan
(2)loga m
logamlogan n
(3)logamn?nlogam(n?r) 6. 引入实例,加深对公式的理解
例2.求下列各式的值
(1)log2(47?25);
(2)lg;
解:(1) log 4 7 ? (2) lg2 5)2(
log247log2257log245log227251 19
lg1025 25
高中数学的教学设计4
函数的奇偶性是函数的重要性质,是对函数概念的深化。它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称。这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析。
教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义。然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例。最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系。这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性。
教学目标
1、通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力。
2、理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性。
3、在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的。
任务分析
这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数 ,k≠0,二次函数y=ax,a≠0,故可在此基础上,引入奇、偶函数的概念,以便于学生理解。在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔。
对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的`非空数集;对于在有定义的奇函数y=fx,一定有f0=0既是奇函数,又是偶函数的函数有fx=0,x∈R在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数。关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果。
教学设计
一、问题情景
1、观察如下两图,思考并讨论以下问题:
(1)这两个函数图像有什么共同特征?
(2)相应的两个函数值对应表是如何体现这些特征的?
可以看到两个函数的图像都关于y轴对称。
从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同。
对于函数fx=x,有f3=9=f3,f2=4=f2,f1=1=f1。事实上,对于R内任意的一个x,都有fx=x2=x2=fx。此时,称函数y=x2为偶函数。
2、观察函数fx=x和fx= 的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征。
可以看到两个函数的图像都关于原点对称。函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值fx也是一对相反数,即对任一x∈R都有fx=fx。此时,称函数y=fx为奇函数。
二、建立模型
由上面的分析讨论引导学生建立奇函数、偶函数的定义
1奇、偶函数的定义
如果对于函数fx的定义域内任意一个x,都有fx=fx,那么函数fx就叫作奇函数。如果对于函数fx的定义域内任意一个x,都有fx=fx,那么函数fx就叫作偶函数。
2、提出问题,组织学生讨论
(1)如果定义在R上的函数fx满足f2=f2,那么fx是偶函数吗? fx不一定是偶函数
(2)奇、偶函数的图像有什么特征?
(奇、偶函数的图像分别关于原点、y轴对称)
3奇、偶函数的定义域有什么特征? (奇、偶函数的定义域关于原点对称)
三、解释应用
[例 题]
1、判断下列函数的奇偶性。
注:①规范解题格式;
②对于5要注意定义域x∈1,1]。
2、已知:定义在R上的函数fx是奇函数,当x>0时,fx=x1+x,求fx的表达式。
解:1任取x<0,则x>0,∴fx=x1x,
而fx是奇函数,∴fx=fx。∴fx=x1x。
(2)当x=0时,f0=f0,∴f0=f0,故f0=0
3、已知:函数f(x是偶函数,且在∞,0上是减函数,判断fx在0,+∞)上是增函数,还是减函数,并证明你的结论。
解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x在0,+∞)上是增函数,
证明如下:
任取x1>x2>0,则x1 ∵fx在∞,0上是减函数,∴fx1>fx2。 又fx是偶函数,∴fx1>fx2。 ∴f(x在0,+∞)上是增函数。 思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系? [练 习] 1、已知:函数fx是奇函数,在[a,b]上是增函数b>a>0,问fx在[b,a]上的单调性如何。 2fx=x3|x|的大致图像可能是 3、函数fx=ax2+bx+c,a,b,c∈R,当a,b,c满足什么条件时,1函数fx是偶函数。2函数fx是奇函数。 4设fx,gx分别是R上的奇函数和偶函数,并且fx+gx=xx+1,求fx,gx的解析式。 四、拓展延伸 1、有既是奇函数,又是偶函数的函数吗?若有,有多少个? 2设fx,gx分别是R上的奇函数,偶函数,试研究: 1Fx=fx·gx的奇偶性。 2Gx=|fx|+gx的奇偶性。 3、已知a∈R,fx=a ,试确定a的值,使fx是奇函数。 4、一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式? 一、学习目标与任务 1、学习目标描述 知识目标 (A)理解和掌握圆锥曲线的第一定义和第二定义,并能应用第一定义和第二定义来解题。 (B)了解圆锥曲线与现实生活中的联系,并能初步利用圆锥曲线的知识进行知识延伸和知识创新。 能力目标 (A)通过学生的操作和协作探讨,培养学生的实践能力和分析问题、解决问题的能力。 (B)通过知识的再现培养学生的创新能力和创新意识。 (C)专题网站中提供各层次的例题和习题,解决各层次学生的学习过程中的各种的需要,从而培养学生应用知识的能力。 德育目标 让学生体会知识产生的全过程,培养学生运动变化的辩证唯物主义思想。 2、学习内容与学习任务说明 本节课的内容是圆锥曲线的第一定义和圆锥曲线的统一定义,以及利用圆锥曲线的定义来解决轨迹问题和最值问题。 学习重点:圆锥曲线的第一定义和统一定义。 学习难点:圆锥曲线第一定义和统一定义的应用。 明确本课的重点和难点,以学习任务驱动为方式,以圆锥曲线定义和定义应用为中心,主动操作实验、大胆分析问题和解决问题。 抓住本节课的重点和难点,采取的基于学科专题网站下的三者结合的教学模式,突出重点、突破难点。 充分利用《圆锥曲线》专题网站内的内容,在着重学习内容的基础上,内延外拓,培养学生的创新精神和克服困难的信心。 二、学习者特征分析 (说明学生的学习特点、学习习惯、学习交往特点等) l本课的学习对象为高二下学期学生,他们经过近两年的高中学习,已经有一定的学习基础和分析问题、解决问题的能力,基本的计算机操作较为熟练。 高二年下学期学生由于高考的压力,他们保持着传统教学的学习习惯,在 l课堂上的主体作用的体现不是太充分,但是如果他们还是乐于尝试、勇于探索的.。 高二年的学生在学习交往上“个别化学习”和“协作讨论学习”并存,也就是说学生是具有一定的群体性小组交流能力与协同讨论学习能力的,还是能完成上课时教师布置的协作学习任务的。 三、学习环境选择与学习资源设计 1.学习环境选择(打√) (1)Web教室(√)(2)局域网(3)城域网(4)校园网(√)(5)Internet(√) (6)其它 2、学习资源类型(打√) (1)课件(网络课件)(√)(2)工具(3)专题学习网站(√)(4)多媒体资源库 (5)案例库(6)题库(7)网络课程(8)其它 3、学习资源内容简要说明 (说明名称、网址、主要内容等) 《圆锥曲线专题网站》:从自然与科技、定义与应用、性质与实践和创新与未来四个方面围绕圆锥曲线进行探讨与研究。(IP:192.168.3.134) 用Flash5、几何画板和Authorware6制作可操作且具有交互性的网络课件放在专题网站里。 四、学习情境创设 1、学习情境类型(打√) (1)真实性情境(√)(2)问题性情境(√) (3)虚拟性情境(√)(4)其它 2、学习情境设计 真实性情境:用Flash5制作的一系列教学软件。用几何画板制作的《圆锥曲线的统一定义》的教学软件。 问题性情境:圆锥曲线的截取方法、圆锥曲线的各种定义、典型例题。 虚拟性情境:Authorware6制作的《圆锥曲线的截取》,模拟曲线截取。 五、学习活动的组织 1、自主学习设计(打√并填写相关内容) (1)抛锚式 (2)支架式(√)相应内容:圆锥曲线的第一定义和统一定义。 使用资源:数学教材、专题网站及专题网站下的多媒体教学软件。 学生活动:分析、操作、协作讨论、总结、提交结论。 教师活动:问题的提出。学习资源获取路径的指导。问题解答和咨询。 (3)随机进入式(√)相应内容:圆锥曲线定义的典型应用。 使用资源:轨迹问题、最值问题、其它问题三种典型例题以及各个题目的动画演示和答案。 学生活动:根据自身情况选题、分析题目、协作讨论、解答题目。 教师活动:讲解例题,总结点评学生做题过程中的问题。 (4)其它 2、协作学习设计(打√并填写相关内容) (1)竞争 (2)伙伴(√) 相应内容:圆锥曲线的第一定义和统一定义 使用资源:数学教材、专题网站及专题网站下的多媒体教学软件。 分组情况:每组三人 学生活动:学生之间对圆锥曲线的定义展开讨论,从而达到对定义的理解和掌握。 教师活动:问题的提出。学习资源获取路径的指导。问题解答和咨询。 (3)协同(√) 相应内容:圆锥曲线定义的典型应用。 使用资源:轨迹问题、最值问题、其它问题三种典型例题以及各个题目的动画演示和答案。 分组情况:每组三人。 学生活动:通过协作讨论区,同学之间互相配合、互相帮助、各种观点互相补充。 教师活动:总结点评学生做题过程中的问题。 (4)辩论 (5)角色扮演 (6)其它 4、教学结构流程的设计 六、学习评价设计 1、测试形式与工具(打√) (1)堂上提问(√)(2)书面练习(3)达标测试(4)学生自主网上测试(√)(5)合作完成作品(6)其它 2、测试内容 教师堂上提问:圆锥曲线的定义、学生提交的结论的完整性、学生协作讨论时的疑问、例题讲解过程中问题,课堂总结。 学生自主网上测试:解决轨迹问题、最值问题、其它问题三种典型题目。 (附)圆锥曲线专题网站设计分析 (1)设计思路 (A)给学生操作与实践的机会:在每一环节中建设一个可供学生操作的实验平台。 (B)突出教学中“主导和主体”的作用:在每一环节中建设一个可供师生交流的平台。 (C)突出知识的再创新过程和知识的延伸:如圆锥曲线的作法和知识的创新与应用。 (D)强调教学软件的交互性:如在题目中给出提示的动画过程和解答过程。 (E)突出和各学科的联系:如斜抛运动和行星运动等等。 (F)强调分层次的教学: 如在知识应用中的配置不同层次的例题和练习: (2)网站导航图 一、指导思想与理论依据 数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。 二、教材分析 三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角 与 、 、 终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位. 三、学情分析 本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容. 四、教学目标 (1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式; (2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简; (3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力; (4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观. 五、教学重点和难点 1.教学重点 理解并掌握诱导公式. 2.教学难点 正确运用诱导公式,求三角函数值,化简三角函数式. 六、教法学法以及预期效果分析 高中数学优秀教案高中数学教学设计与教学反思 “授人以鱼不如授之以鱼”, 作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法, 如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析. 1.教法 数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质. 在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”, 由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦. 2.学法 “现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题. 在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题 简单应用、重现探索过程、练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习. 3.预期效果 本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题. 七、教学流程设计 (一)创设情景 1.复习锐角300,450,600的三角函数值; 2.复习任意角的三角函数定义; 3.问题:由 ,你能否知道sin2100的值吗?引如新课. 设计意图 高中数学优秀教案 高中数学教学设计与教学反思 自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法. (二)新知探究 1. 让学生发现300角的终边与2100角的终边之间有什么关系; 2.让学生发现300角的终边和2100角的终边与单位圆的交点的`坐标有什么关系; 3.Sin2100与sin300之间有什么关系. 设计意图 由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角 与 的三角函数值的关系做好铺垫. (三)问题一般化 探究一 1.探究发现任意角 的终边与 的终边关于原点对称; 2.探究发现任意角 的终边和 角的终边与单位圆的交点坐标关于原点对称; 3.探究发现任意角 与 的三角函数值的关系. 设计意图 首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特殊到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二.同时也为学生将要自主发现、探索公式三和四起到示范作用,下面练习设计为了熟悉公式一,让学生感知到成功的喜悦,进而敢于挑战,敢于前进 (四)练习 利用诱导公式(二),口答下列三角函数值. (1). ;(2). ;(3). . 喜悦之后让我们重新启航,接受新的挑战,引入新的问题. (五)问题变形 由sin3000= -sin600 出发,用三角的定义引导学生求出 sin(-3000),Sin150 0值,让学生联想若已知sin3000= -sin600 ,能否求出sin(-3000),Sin150 0)的值. 学生自主探究 一、教学内容分析: 本节教材选自人教a版数学必修②第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。 二、学生学习情况分析: 任教的学生在年段属中上程度,学生学习兴趣较高,但学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。 三、设计思想 本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。 四、教学目标 通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。 五、教学重点与难点 重点是判定定理的引入与理解,难点是判定定理的应用及立几空间感、空间观念的形成与逻辑思维能力的培养。 六、教学过程设计 (一)知识准备、新课引入 提问1:根据公共点的情况,空间中直线a和平面?有哪几种位置关系?并完成下表:(多媒体幻灯片演示) a?? 提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。 [设计意图:通过提问,学生复习并归纳空间直线与平面位置关系引入本节课题,并为探寻直线与平面平行判定定理作好准备。] (二)判定定理的探求过程 1、直观感知 提问:根据同学们日常生活的观察,你们能感知到并举出直线与平面平行的具体事例吗? 生1:例举日光灯与天花板,树立的电线杆与墙面。 生2:门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行(由学生到教室门前作演示),然后教师用多媒体动画演示。 [学情预设:此处的预设与生成应当是很自然的,但老师要预见到可能出现的情况如电线杆与墙面可能共面的情形及门要离开门框的位置等情形。] 2、动手实践 教师取出预先准备好的直角梯形泡沫板演示:当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置给人以平行的感觉,而当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象就不平行。又如老师直立讲台,则大家会感觉到老师(视为线)与四周墙面平行,如老师向前或后倾斜则感觉老师(视为线)与左、右墙面平行,如老师向左、右倾斜,则感觉老师(视为线)与前、后墙面平行(老师也可用事先准备的木条放在讲台桌上作上述情形的演示)。 [设计意图:设置这样动手实践的情境,是为了让学生更清楚地看到线面平行与否的关键因素是什么,使学生学在情境中,思在情理中,感悟在内心中,学自己身边的数学,领悟空间观念与空间图形性质。] 3、探究思考 (1)上述演示的直线与平面位置关系为何有如此的不同?关键是什么因素起了作用呢?通过观察感知发现直线与平面平行,关键是三个要素:①平面外一条线②我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为平面内一条直线③这两条直线平行 (2)如果平面外的直线a与平面?内的一条直线b平行,那么直线a与平面?平行吗? 4、归纳确认:(多媒体幻灯片演示) 直线和平面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线和这个平面平行。 简单概括:(内外)线线平行?线面平行a符号表示:ba||? a||b?? 温馨提示: 作用:判定或证明线面平行。 关键:在平面内找(或作)出一条直线与面外的直线平行。 思想:空间问题转化为平面问题 (三)定理运用,问题探究(多媒体幻灯片演示) 1、想一想: (1)判断下列命题的真假?说明理由: ①如果一条直线不在平面内,则这条直线就与平面平行() ②过直线外一点可以作无数个平面与这条直线平行( ) ③一直线上有二个点到平面的距离相等,则这条直线与平面平行( ) (2)若直线a与平面?内无数条直线平行,则a与?的位置关系是( ) a、a ||? b、a?? c、a ||?或a?? d、a?? [学情预设:设计这组问题目的是强调定理中三个条件的重要性,同时预设(1)中的③学生可能认为正确的,这样就无法达到老师的预设与生成的目的,这时教师要引导学生思考,让学生想象的空间更广阔些。此外教师可用预先准备好的羊毛针与泡沫板进行演示,让羊毛针穿过泡沫板以举不平行的反例,如果有的学生空间想象力强,能按老师的要求生成正确的结果则就由个别学生进行演示。] 2、作一作: 设a、b是二异面直线,则过a、b外一点p且与a、b都平行的平面存在吗?若存在请画出平面,不存在说明理由? 先由学生讨论交流,教师提问,然后教师总结,并用准备好的羊毛针、铁线、泡沫板等演示平面的形成过程,最后借多媒体展示作图的动画过程。 [设计意图:这是一道动手操作的'问题,不仅是为了拓展加深对定理的认识,更重要的是培养学生空间感与思维的严谨性。] 3、证一证: 例1(见课本60页例1):已知空间四边形abcd中,e、f分别是ab、ad的中点,求证:ef ||平面bcd。 变式一:空间四边形abcd中,e、f、g、h分别是边ab、bc、cd、da中点,连结ef、fg、gh、he、ac、bd请分别找出图中满足线面平行位置关系的所有情况。(共6组线面平行)变式二:在变式一的图中如作pq?ef,使p点在线段ae上、q点在线段fc上,连结ph、qg,并继续探究图中所具有的线面平行位置关系?(在变式一的基础上增加了4组线面平行),并判断四边形efgh、pqgh分别是怎样的四边形,说明理由。 [设计意图:设计二个变式训练,目的是通过问题探究、讨论,思辨,及时巩固定理,运用定理,培养学生的识图能力与逻辑推理能力。]例2:如图,在正方体abcd—a1b1c1d1中,e、f分别是棱bc与c1d1中点,求证:ef ||平面bdd1b1分析:根据判定定理必须在平 面bdd1b1内找(作)一条线与ef平行,联想到中点问题找中点解决的方法,可以取bd或b1d1中点而证之。 思路一:取bd中点g连d1g、eg,可证d1gef为平行四边形。 思路二:取d1b1中点h连hb、hf,可证hfeb为平行四边形。 [知识链接:根据空间问题平面化的思想,因此把找空间平行直线问题转化为找平行四边形或三角形中位线问题,这样就自然想到了找中点。平行问题找中点解决是个好途径好方法。这种思想方法是解决立几论证平行问题,培养逻辑思维能力的重要思想方法] 4、练一练: 练习1:见课本6页练习1、2 练习2:将两个全等的正方形abcd和abef拼在一起,设m、n分别为ac、bf中点,求证:mn ||平面bce。 变式:若将练习2中m、n改为ac、bf分点且am = fn,试问结论仍成立吗?试证之。 [设计意图:设计这组练习,目的是为了巩固与深化定理的运用,特别是通过练习2及其变式的训练,让学生能在复杂的图形中去识图,去寻找分析问题、解决问题的途径与方法,以达到逐步培养空间感与逻辑思维能力。] (四)总结 先由学生口头总结,然后教师归纳总结(由多媒体幻灯片展示): 1、线面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线与这个平面平行。 2、定理的符号表示:ba||? a||b??简述:(内外)线线平行则线面平行 3、定理运用的关键是找(作)面内的线与面外的线平行,途径有:取中点利用平行四边形或三角形中位线性质等。 七、教学反思 本节“直线与平面平行的判定”是学生学习空间位置关系的判定与性质的第一节课,也是学生开始学习立几演泽推理论述的思维方式方法,因此本节课学习对发展学生的空间观念和逻辑思维能力是非常重要的。 本节课的设计遵循“直观感知——操作确认——思辩论证”的认识过程,注重引导学生通过观察、操作交流、讨论、有条理的思考和推理等活动,从多角度认识直线和平面平行的判定方法,让学生通过自主探索、合作交流,进一步认识和掌握空间图形的性质,积累数学活动的经验,发展合情推理、发展空间观念与推理能力。 本节课的设计注重训练学生准确表达数学符号语言、文字语言及图形语言,加强各种语言的互译。比如上课开始时的复习引入,让学生用三种语言的表达,动手实践、定理探求过程以及定理描述也注重三种语言的表达,对例题的讲解与分析也注意指导学生三种语言的表达。 本节课对定理的探求与认识过程的设计始终贯彻直观在先,感知在先,学自己身边的数学,感知生活中包涵的数学现象与数学原理,体验数学即生活的道理,比如让学生举生活中能感知线面平行的例子,学生会举出日光灯与天花板,电线杆与墙面,转动的门等等,同时老师的举例也很贴进生活,如老师直立时与四周墙面平行,而向前、向后倾斜则只与左右墙面平行,而向左、右倾斜则与前后黑板面平行。然后引导学生从中抽象概括出定理。 一、教学内容分析 圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象,恰当地利用定义解题,许多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。 二、学生学习情况分析 我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。 三、设计思想 由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情。在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率。 四、教学目标 1、深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。 2、通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。 3、借助多媒体辅助教学,激发学习数学的兴趣。 五、教学重点与难点: 教学重点 1、对圆锥曲线定义的理解 2、利用圆锥曲线的定义求“最值” 3、“定义法”求轨迹方程 教学难点: 巧用圆锥曲线定义解题 六、教学过程设计 【设计思路】 (一)开门见山,提出问题 一上课,我就直截了当地给出例题1: (1)已知A(-2,0),B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是()。 (A)椭圆(B)双曲线(C)线段(D)不存在 (2)已知动点M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是()。 (A)椭圆(B)双曲线(C)抛物线(D)两条相交直线 【设计意图】 定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。 为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。 【学情预设】 估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折——如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)25 这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|5入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。 在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。以深化对概念的理解。 (二)理解定义、解决问题 例2: (1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910相内切,求△ABC面积的最大值。 (2)在(1)的条件下,给定点P(-2,2),求|PA| 【设计意图】 运用圆锥曲线定义中的数量关系进行转化,使问题化归为几何中求最大(小)值的模式,是解析几何问题中的一种常见题型,也是学生们比较容易混淆的一类问题。例2的设置就是为了方便学生的辨析。 【学情预设】 根据以往的经验,多数学生看上去都能顺利解答本题,但真正能完整解答的可能并不多。事实上,解决本题的关键在于能准确写出点A的轨迹,有了练习题1的铺垫,这个问题对学生们来讲就显得颇为简单,因此面对例2(1),多数学生应该能准确给出解答,但是对于例2(2)这样相对比较陌生的问题,学生就无从下手。我提醒学生把3/5和离心率联系起来,这样就容易和第二定义联系起来,从而找到解决本题的突破口。 (三)自主探究、深化认识 如果时间允许,练习题将为学生们提供一次数学猜想、试验的机会。 练习: 设点Q是圆C:(x1)2225|AB|的最小值。3y225上动点,点A(1,0)是圆内一点,AQ的垂直平分线与CQ交于点M,求点M的轨迹方程。 引申:若将点A移到圆C外,点M的轨迹会是什么? 【设计意图】练习题设置的目的是为学生课外自主探究学习提供平台,当然,如果课堂上时间允许的话, 可借助“多媒体课件”,引导学生对自己的结论进行验证。 【知识链接】 (一)圆锥曲线的定义 1、圆锥曲线的第一定义 2、圆锥曲线的统一定义 (二)圆锥曲线定义的应用举例 1、双曲线1的两焦点为F1、F2,P为曲线上一点,若P到左焦点F1的距离为12,求P到右准线的距离。 2、|PF1||PF2|2P为等轴双曲线x2y2a2上一点,F1、F2为两焦点,O为双曲线的中心,求的|PO|取值范围。 3、在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。 4、例题: (1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求|MA|+|MF|的最小值。 (2)已知A(,3)为一定点,F为双曲线1的右焦点,M在双曲线右支上移动,当|AM||MF|最小时,求M点的坐标。 (3)已知点P(-2,3)及焦点为F的抛物线y,在抛物线上求一点M,使|PM|+|FM|最小。 5、已知A(4,0),B(2,2)是椭圆1内的点,M是椭圆上的动点,求|MA|+|MB|的最小值与最大值。 七、教学反思 1、本课将借助于,将使全体学生参与活动成为可能,使原来令人难以理解的抽象的数学理论变得形象,生动且通俗易懂,同时,运用“多媒体课件”辅助教学,节省了板演的'时间,从而给学生留出更多的时间自悟、自练、自查,充分发挥学生的主体作用,这充分显示出“多媒体课件”与探究合作式教学理念的有机结合的教学优势。 2、利用两个例题及其引申,通过一题多变,层层深入的探索,以及对猜测结果的检测研究,培养学生思维能力,使学生从学会一个问题的求解到掌握一类问题的解决方法,循序渐进的让学生把握这类问题的解法;将学生容易混淆的两类求“最值问题”并为一道题,方便学生进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。 总之,如何更好地选择符合学生具体情况,满足教学目标的例题与练习、灵活把握课堂教学节奏仍是我今后工作中的一个重要研究课题,而要能真正进行素质教育,培养学生的创新意识,自己首先必须更新观念——在教学中适度使用多媒体技术,让学生有参与教学实践的机会,能够使学生在学习新知识的同时,激发起求知的欲望,在寻求解决问题的办法的过程中获得自信和成功的体验,于不知不觉中改善了他们的思维品质,提高了数学思维能力。 教学准备 教学目标 解三角形及应用举例 教学重难点 解三角形及应用举例 教学过程 一.基础知识精讲 掌握三角形有关的定理 利用正弦定理,可以解决以下两类问题: (1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);利用余弦定理,可以解决以下两类问题: (1)已知三边,求三角; (2)已知两边和它们的夹角,求第三边和其他两角。 掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题. 二.问题讨论 思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论. 思维点拨::三角形中的三角变换,应灵活运用正、余弦定理.在求值时,要利用三角函数的有关性质. 例6:在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市O(如图)的东偏南方向300 km的海面P处,并以20 km / h的速度向西偏北的'方向移动,台风侵袭的范围为圆形区域,当前半径为60 km,并以10 km / h的速度不断增加,问几小时后该城市开始受到台风的侵袭。 一. 小结: 1.利用正弦定理,可以解决以下两类问题: (1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角); 2.利用余弦定理,可以解决以下两类问题: (1)已知三边,求三角; (2)已知两边和它们的夹角,求第三边和其他两角。 3.边角互化是解三角形问题常用的手段. 三.作业:P80闯关训练 一.教材分析。 ( 1)教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学 ( 5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思 想方法,都是学生今后学习和工作中必备的数学素养。 (2)从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫 二.学情分析。 ( 1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。 ( 2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强,逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。 (3)从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。 三.教学目标。 根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为:(1)知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。 (2)过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力. (3)情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美。 四.重点,难点分析。 教学重点:公式的推导、公式的.特点和公式的运用。 教学难点:公式的推导方法及公式应用中q与1的关系。 五.教法与学法分析. 培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而 获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话:还课堂以生命力,还学生以活力。 六.课堂设计 (一)创设情境,提出问题。(时间设定:3分钟) [利用投影展示]在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢? [设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点] 提出问题1:同学们,你们知道西萨要的是多少粒小麦吗? 一、教材分析 数学归纳法是一种重要的数学证明方法,在高中数学内容中占有重要的地位,其中体现的数学思想方法对学生进一步学习数学、领悟数学思想至关重要。本课是数学归纳法的第一节课,前面学生对等差数列、数列求和、二项式定理等知识有较全面的把握和较深入的理解,初步掌握了由有限多个特殊事例得出一般结论的推理方法,即不完全归纳法,这是研究数学问题,猜想或发现数学规律的重要手段。但是,由有限多个特殊事例得出的结论不一定正确,这种推理方法不能作为一种论证方法。因此,在不完全归纳法的基础上,必须进一步学习严谨的科学的论证方法——数学归纳法,这是促进学生从有限思维发展到无限思维的一个重要环节,同时本节内容又是培养学生严密的推理能力、训练学生的抽象思维能力、体验数学内在美的好素材。 二、教学目标 学生通过数列等相关知识的学习,已经基本掌握了不完全归纳法,已经由一定的观察、归纳、猜想能力。 根据教学内容特点和教学大纲,结合学生实际而制定以下教学目标: 1.知识目标 (1)了解由有限多个特殊事例得出的一般结论不一定正确。 (2)初步理解数学归纳法原理。 (3)能以递推思想为指导,理解数学归纳法证明数学命题的两个步骤一个结论。 (4)会用数学归纳法证明与正整数相关的简单的恒等式。 2.能力目标 (1)通过对数学归纳法的学习,使学生初步掌握观察、归纳、猜想、分析能力和严密的逻辑推理能力。 (2)在学习中培养学生大胆猜想,小心求证的辨证思维素质以及发现问题、提出问题的意识和数学交流的能力。 3.情感目标 (1)通过对数学归纳法原理的探究,亲历知识的构建过程,领悟其中所蕴含的数学思想和辨正唯物主义观点。 (2)体验探索中挫折的艰辛和成功的快乐,感悟数学的内在美,激发学生学习热情,使学生喜欢数学。 (3)学生通过置疑与探究,初步形成正确的数学观,创新意识和严谨的科学精神。 三、教学重点与难点 1.教学重点 借助具体实例了解数学归纳法的基本思想,掌握它的'基本步骤,运用它证明一些与正整数有关的简单恒等式,特别要注意递推步骤中归纳假设的运用和恒等变换的运用。 2.教学难点 (1)如何理解数学归纳法证题的严密性和有效性。 (2)递推步骤中如何利用归纳假设,即如何利用假设证明当时结论正确。 四、教学方法 本节课采用交往性教学方法,以学生及其发展为本,一切从学生出发。在教师组织启发下,通过创设问题情境,激发学习欲望。师生之间、学生之间共同探究多米诺骨牌倒下的原理,并类比多米诺骨牌倒下的原理,探究数学归纳法的原理、步骤;培养学生归纳、类比推理的能力,进而应用数学归纳法,证明一些与正整数n有关的简单数学命题;提高学生的应用能力,分析问题、解决问题的能力。既重视教师的组织引导,又强调学生的主体性、主动性、交流性和合作性。 五、教学过程 (一)创设情境,提出问题 情境一:根据观察某学校第一个到校的女同学,第二个到校的也是女同学,第三个到校的还是女同学,于是得出:这所学校的学生全部是女同学。 情境二:平面内三角形内角和是,四边形内角和是,五边形内角和是,于是得出:凸边形内角和是。 情境三:数列的通项公式为,可以求得,,,,于是猜想出数列的通项公式为。 结论:运用有限多个特殊事例得出的一般性结论,即不完全归纳法不一定正确。因此它不 能作为一种论证的方法。 提出问题:如何寻找一个科学有效的方法证明结论的正确性呢?我们本节课所要学习的数 学归纳法就是解决这一问题的方法之一。 (二)实验演示,探索解决问题的方法 1.几何画板演示动画多米诺骨牌游戏,师生共同探讨:要让这些骨牌全部倒下,必 须具备那些条件呢?(学生可以讨论,加以教师点拨) ①第一块骨牌必须倒下。 ②两块连续的骨牌,当前一块倒下,后面一块必须倒下。 (启发学生转换成数学符号语言:当第块倒下,则第块必须倒下) 教师总结:数学归纳法的原理就如同多米诺骨牌一样。 2.学生类比多米诺骨牌原理,探究出证明有关正整数命题的方法,从而导出本课的重心:数学归纳法的原理及其证明的两个步骤。(给学生思考的时间,教师提问,学生回答,教师补充完善,对学生的回答给予肯定和鼓励) 数学归纳法公理:(板书) (1)(递推基础)当取第一个值(例如等)结论正确; (2)(递推归纳)假设当时结论正确;(归纳假设) 证明当时结论也正确。(归纳证明) 那么,命题对于从开始的所有正整数都成立。 教师总结:步骤(1)是数学归纳法的基础,步骤(2)建立了递推过程,两者缺一不 可,这就是数学归纳法。 (三)迁移应用,理解升华 例1:用数学归纳法证明:等差数列中,为首项,为公差,则通项公式为.① 选题意图:让学生注意:①数学归纳法是一种完全归纳的证明方法,它适用于与正整数有关的问题; ②两个步骤,一个结论缺一不可,否则结论不成立; ③在证明递推步骤时,必须使用归纳假设,必须进行恒等变换。 此时学生心中已有一个初步的证明模式,教师应该规范板书,给学生提供一个示范。 证明:(1)当时,等式左边,等式右边,等式①成立. (2)假设当时等式①成立,即有 那么,当时,有所以当时等式①也成立。 根据(1)和(2),可知对任何,等式①都成立。 例2:用数学归纳法证明:当时 选题意图:通过师生共同活动,使学生进一步熟悉数学归纳法证题的两个步骤和一个结论。 例3:用数学归纳法证明:当时 选题意图:①进一步让学生理解数学归纳法的严密性和合理性,从而从感性认识上升为理性认识; ②掌握从到时等式左边的变化情况,合理的进行添项、拆项、合并项等。 (四)反馈练习,巩固提高 课堂练习:用数学归纳法证明:当时 (练习让学生独立完成,上黑板板演,要求书写工整,步骤完整,表述清楚,如果发现学 生证明过程中的错误,教师及时纠正、剖析,同时对学生板演好的方面予以肯定和鼓励。) 教师总结:利用数学归纳法证明和正整数相关的命题时,要注意以下三句话:递推基础不 可少,归纳假设要用到,结论写明莫忘掉。 (五)反思总结 学生思考后,教师提问,让同学相互补充完善,教师最后总结,这一环节可以培养学 生抽象、归纳、概括、总结的能力,同时教师也可以及时了解学生的掌握情况,以便弥补和及时调整下节课的教学方向。 小结:(1)归纳法是一种由特殊到一般的推理方法,分完全归纳法和不完全归纳法两种, 而不完全归纳法得出的结论不具有可靠性,必须用数学归纳法进行严格证明; (2)数学归纳法作为一种证明方法,用于证明一些与正整数n有关数学命题,它的基本思想是递推思想,它的证明过程必须是两步,最后还有结论,缺一不可; (3)递推归纳时从到,必须用到归纳假设,并进行适当的恒等变换。 (六)作业布置 选修2-2习题2.3第1题第2题 前言 为了更好地贯彻落实和科课程标准有关要求,促进广大教师学习现代教学理论,进一步激发广大教师课堂教学的创新意识,切实转变教学观念,积极探索新课程理念下的教与学,有效解决教学实践中存在的问题,促进课堂教学质量的全面提高,在20xx年由福建省普通教育教学研究室组织,举办了一次教学设计大赛活动。这次活动数学学科高中组共收到有49篇教学设计文章。获奖文章推荐评审专家组本着公平、公正的原则,经过认真的评审,全部作品均评出了相应的奖项;专家组还为获得一、二等奖的作品撰写了点评。本稿收录的作品全部是参加此次福建省教学设计竞赛获奖作者的文章。按照征文的规则,我们对入选作品的格式作了一些修饰,并经过适当的整合,以飨读者。 在此还需要说明的是,为了方便阅读,获奖文章的排序原则,并非按照获奖名次的前后顺序,而是按照高中数学新课程必修1—5的内容顺序,进行编排的。部分体现大纲教材内容的文章则排在后面。 不管你获得的是哪个级别的奖项,你们都可以有成就感,因为那是你们用心、用汗浇灌出的果实,它记录了你们奉献于数学教育事业的心路历程.书中每一篇的教学设计都耐人寻味,都能带给我们许多遐想和启迪.你们是优秀的,在你们未来悠远的职业里程中,只要努力,将有更多的辉煌在等待着大家。谢谢你们! 1、集合与函数概念实习作业 一、教学内容分析 《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。-----《实习作业》。本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力。学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣。 二、学生学习情况分析 该内容在《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的“导演”角色。特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶。 三、设计思想 《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的`创新精神,以及数学文明的深刻内涵。 四、教学目标 1.了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物; 2.体验合作学习的方式,通过合作学习品尝分享获得知识的快乐; 3.在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观。 五、教学重点和难点 重点:了解函数在数学中的核心地位,以及在生活里的广泛应用; 难点:培养学生合作交流的能力以及收集和处理信息的能力。 六、教学过程设计 【课堂准备】 1.分组:4~6人为一个实习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。 2.选题:根据个人兴趣初步确定实习作业的题目。教师应该到各组中去了解选题情况,尽量多地选择不同的题目。 一、教学目标 1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。 2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。 3、通过对四种命题之间关系的学习,培养学生逻辑推理能力 4、初步培养学生反证法的数学思维。 二、教学分析 重点:四种命题;难点:四种命题的关系 1。本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。 2。教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题, 3.“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。 三、教学手段和方法(演示教学法和循序渐进导入法) 1。以故事形式入题 2多媒体演示 四、教学过程 (一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试! 设计意图:创设情景,激发学生学习兴趣 (二)复习提问: 1.命题“同位角相等,两直线平行”的条件与结论各是什么? 2.把“同位角相等,两直线平行”看作原命题,它的逆命题是什么? 3.原命题真,逆命题一定真吗? “同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真. 学生活动: 口答:(l)若同位角相等,则两直线平行;(2)若一个四边形是正方形,则它的四条边相等. 设计意图: 通过复习旧知识,打下学习否命题、逆否命题的基础. (三)新课讲解: 1.命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。 2.把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。 3.把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。 (四)组织讨论: 让学生归纳什么是否命题,什么是逆否命题。 例1及例2 (五)课堂探究:“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真? 学生活动: 讨论后回答 这两个逆否命题都真. 原命题真,逆否命题也真 引导学生讨论原命题的真假与其他三种命题的真 假有什么关系?举例加以说明,同学们踊跃发言。 (六)课堂小结: 1、一般地,用p和q分别表示原命题的条件和结论,用¬p和¬q分别表示p和q否定时,四种命题的形式就是: 原命题若p则q; 逆命题若q则p;(交换原命题的条件和结论) 否命题,若¬p则¬q;(同时否定原命题的条件和结论) 逆否命题若¬q则¬p。(交换原命题的条件和结论,并且同时否定) 2、四种命题的关系 (1).原命题为真,它的逆命题不一定为真. (2).原命题为真,它的否命题不一定为真. (3).原命题为真,它的逆否命题一定为真 (七)回扣引入 分析引入中的笑话,先讨论,后总结:现在我们来分析一下主人说的`四句话: 第一句:“该来的没来” 其逆否命题是“不该来的来了”,甲认为自己是不该来的,所以甲走了。 第二句:“不该走的走了”,其逆否命题为“该走的没走”,乙认为自己该走,所以乙也走了。 第三句:“俺说的不是你(指乙)”其值为真其非命题:“俺说的是你”为假,则说的是他(指丙)为真。所以,丙认为说的是自己,所以丙也走了。 同学们,生活中处处是数学,期待我们善于发现的眼睛 五、作业 1.设原命题是“若 断它们的真假. ,则 ”,写出它的逆命题、否命题与逆否命题,并分别判 2.设原命题是“当 时,若 ,则 ”,写出它的逆命题、否定命与逆否命题,并分别判断它们的真假. 教学目的: (1)使学生初步理解集合的概念,知道常用数集的概念及记法 (2)使学生初步了解“属于”关系的意义 (3)使学生初步了解有限集、无限集、空集的意义 教学重点: 集合的基本概念及表示方法 教学难点: 运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合 授课类型: 新授课 课时安排: 1课时 教具: 多媒体、实物投影仪 内容分析: 1、集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础 把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑 本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子 这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念 集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明 教学过程: 一、复习引入: 1、简介数集的发展,复习公约数和最小公倍数,质数与和数; 2、教材中的章头引言; 3、集合论的创始人——康托尔(德国数学家)(见附录); 4、“物以类聚”,“人以群分”; 5、教材中例子(P4) 二、讲解新课: 阅读教材第一部分,问题如下: (1)有那些概念?是如何定义的? (2)有那些符号?是如何表示的? (3)集合中元素的特性是什么? (一)集合的有关概念: 由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的`我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集、集合中的每个对象叫做这个集合的元素、 定义:一般地,某些指定的对象集在一起就成为一个集合、 1、集合的概念 (1)集合:某些指定的对象集在一起就形成一个集合(简称集) (2)元素:集合中每个对象叫做这个集合的元素 2、常用数集及记法 (1)非负整数集(自然数集):全体非负整数的集合记作N, (2)正整数集:非负整数集内排除0的集记作N_或N+ (3)整数集:全体整数的集合记作Z, (4)有理数集:全体有理数的集合记作Q, (5)实数集:全体实数的集合记作R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0 (2)非负整数集内排除0的集记作N_或N+Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z_ 3、元素对于集合的隶属关系 (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A (2)不属于:如果a不是集合A的元素,就说a不属于A,记作 4、集合中元素的特性 (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可 (2)互异性:集合中的元素没有重复 (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出) 5、⑴集合通常用大写的拉丁字母表示,如A.B.C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q…… ⑵“∈”的开口方向,不能把a∈A颠倒过来写 三、练习题: 1、教材P5练习1、2 2、下列各组对象能确定一个集合吗? (1)所有很大的实数(不确定) (2)好心的人(不确定) (3)1,2,2,3,4,5、(有重复) 3、设a,b是非零实数,那么可能取的值组成集合的元素是_—2,0,2__ 4、由实数x,—x,|x|,所组成的集合,最多含(A) (A)2个元素(B)3个元素(C)4个元素(D)5个元素 5、设集合G中的元素是所有形如a+b(a∈Z,b∈Z)的数,求证: (1)当x∈N时,x∈G; (2)若x∈G,y∈G,则x+y∈G,而不一定属于集合G 证明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0, 则x=x+0_=a+b∈G,即x∈G 证明(2):∵x∈G,y∈G, ∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z) ∴x+y=(a+b)+(c+d)=(a+c)+(b+d) ∵a∈Z,b∈Z,c∈Z,d∈Z ∴(a+c)∈Z,(b+d)∈Z ∴x+y=(a+c)+(b+d)∈G, 又∵= 且不一定都是整数, ∴=不一定属于集合G 四、小结:本节课学习了以下内容: 1、集合的有关概念:(集合、元素、属于、不属于) 2、集合元素的性质:确定性,互异性,无序性 3、常用数集的定义及记法 五、课后作业: 六、板书设计(略) 七、课后记: 八、附录:康托尔简介 发疯了的数学家康托尔(GeorgCantor,1845—1918)是德国数学家,集合论的 1845年3月3日生于圣彼得堡,1918年1月6日病逝于哈雷 康托尔11岁时移居德国,在德国读中学 1862年17岁时入瑞士苏黎世大学,翌年入柏林大学,主修数学,1866年曾去格丁根学习一学期 1867年以数论方面的论文获博士学位 1869年在哈雷大学通过讲师资格考试,后在该大学任讲师,1872年任副教授,1879年任教授 由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度 在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战 他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应 这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论 康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂 有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子” 来自数学_们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神_症,被送进精神病医院 真金不怕火炼,康托尔的思想终于大放光彩 1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作 ”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦 1918年1月6日,康托尔在一家精神病院去世 集合论是现代数学的基础,康托尔在研究函数论时产生了探索无穷集和超穷数的兴趣 康托尔肯定了无穷数的存在,并对无穷问题进行了哲学的讨论,最终建立了较完善的集合理论,为现代数学的发展打下了坚实的基础 康托尔创立了集合论作为实数理论,以至整个微积分理论体系的基础 从而解决17世纪牛顿(I.Newton,1642—1727)与莱布尼茨(G.W.Leibniz,1646—1716)创立微积分理论体系之后,在近一二百年时间里,微积分理论所缺乏的逻辑基础和从19世纪开始,柯西(A.L.Cauchy,1789—1857)、魏尔斯特拉斯(K.Weierstrass,1815—1897)等人进行的微积分理论严格化所建立的极限理论 克隆尼克(L.Kronecker,1823—1891),康托尔的老师,对康托尔表现了无微不至的关怀 他用各种用得上的尖刻语言,粗暴地、连续不断地攻击康托尔达十年之久 他甚至在柏林大学的学生面前公开攻击康托尔 横加阻挠康托尔在柏林得到一个薪金较高、声望更大的教授职位 使得康托尔想在柏林得到职位而改善其地位的任何努力都遭到挫折 法国数学家彭加勒(H.Poi—ncare,1854—1912):我个人,而且还不只我一人,认为重要之点在于,切勿引进一些不能用有限个文字去完全定义好的东西 集合论是一个有趣的“病理学的情形”,后一代将把(Cantor)集合论当作一种疾病,而人们已经从中恢复过来了 德国数学家魏尔(C.H、Her—mannWey1,1885—1955)认为,康托尔关于基数的等级观点是雾上之雾 菲利克斯、克莱因(F.Klein,1849—1925)不赞成集合论的思想 数学家H.A.施瓦兹,康托尔的好友,由于反对集合论而同康托尔断交 从1884年春天起,康托尔患了严重的忧郁症,极度沮丧,神态不安,精神病时时发作,不得不经常住到精神病院的疗养所去 变得很自卑,甚至怀疑自己的工作是否可靠 他请求哈勒大学_把他的数学教授职位改为哲学教授职位 健康状况逐渐恶化,1918年,他在哈勒大学附属精神病院去世 流星埃、伽罗华(E、Galois,1811—1832),法国数学家 伽罗华17岁时,就着手研究数学中最困难的问题之一一般π次方程求解问题 许多数学家为之耗去许多精力,但都失败了 直到1770年,法国数学家拉格朗日对上述问题的研 究才算迈出重要的一步伽罗华在前人研究成果的基础上,利用群论的方法从系统结构的整体上彻底解决了根式解的难题他从拉格朗日那里学习和继承了问题转化的思想,即把预解式的构成同置换群联系起来,并在阿贝尔研究的基础上,进一步发展了他的思想,把全部问题转化成或者归结为置换群及其子群结构的分析上同时创立了具有划时代意义的数学分支——群论,数学发展作出了重大贡献1829年,他把关于群论研究所初步结果的第一批论文提交给法国科学院科学院委托当时法国最杰出的数学家柯西作为这些论文的鉴定人在1830年1月18日柯西曾计划对伽罗华的研究成果在科学院举行一次全面的意见听取会然而,第二周当柯西向科学院宣读他自己的一篇论文时,并未介绍伽罗华的著作1830年2月,伽罗华将他的研究成果比较详细地写成论文交上去了以参加科学院的数学大奖评选,论文寄给当时科学院终身秘书J.B、傅立叶,但傅立叶在当年5月就去世了,在他的遗物中未能发现伽罗华的手稿1831年1月伽罗华在寻求确定方程的可解性这个问题上,又得到一个结论,他写成论文提交给法国科学院这篇论文是伽罗华关于群论的重要著作当时的数学家S.K、泊松为了理解这篇论文绞尽了脑汁尽管借助于拉格朗日已证明的一个结果可以表明伽罗华所要证明的论断是正确的,但最后他还是建议科学院否定它1832年5月30日,临死的前一夜,他把他的重大科研成果匆忙写成后,委托他的朋友薛伐里叶保存下来,从而使他的劳动结晶流传后世,造福人类1832年5月31日离开了人间死因参加无意义的决斗受重伤1846年,他死后14年,法国数学家刘维尔着手整理伽罗华的重大创作后,首次发表于刘维尔主编的《数学杂志》 教学目标: 1、了解反函数的概念,弄清原函数与反函数的定义域和值域的关系。 2、会求一些简单函数的反函数。 3、在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识。 4、进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力。 教学重点: 求反函数的方法。 教学难点: 反函数的概念。 教学过程: 一、创设情境,引入新课 1、复习提问 ①函数的概念 ②y=f(x)中各变量的意义 2、同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是时间t的函数;在t=中,时间t是位移S的函数。在这种情况下,我们说t=是函数S=vt的反函数。什么是反函数,如何求反函数,就是本节课学习的内容。 3、板书课题 由实际问题引入新课,激发了学生学习兴趣,展示了教学目标。这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性。 二、实例分析,组织探究 1、问题组一: (用投影给出函数与;与()的图象) (1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称。是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算。同样,与()也互为逆运算。) (2)由,已知y能否求x? (3)是否是一个函数?它与有何关系? (4)与有何联系? 2、问题组二: (1)函数y=2x1(x是自变量)与函数x=2y1(y是自变量)是否是同一函数? (2)函数(x是自变量)与函数x=2y1(y是自变量)是否是同一函数? (3)函数()的定义域与函数()的值域有什么关系? 3、渗透反函数的概念。 (教师点明这样的函数即互为反函数,然后师生共同探究其特点) 从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力。 通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础。 三、师生互动,归纳定义 1、(根据上述实例,教师与学生共同归纳出反函数的定义) 函数y=f(x)(x∈A)中,设它的值域为C。我们根据这个函数中x,y的关系,用y把x表示出来,得到x=j(y)。如果对于y在C中的任何一个值,通过x=j(y),x在A中都有的值和它对应,那么,x=j(y)就表示y是自变量,x是自变量y的函数。这样的函数x=j(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数。记作:。考虑到"用x表示自变量,y表示函数"的习惯,将中的x与y对调写成。 2、引导分析: 1)反函数也是函数; 2)对应法则为互逆运算; 3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数; 4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域; 5)函数y=f(x)与x=f(y)互为反函数; 6)要理解好符号f; 7)交换变量x、y的原因。 3、两次转换x、y的对应关系 (原函数中的自变量x与反函数中的函数值y是等价的,原函数中的函数值y与反函数中的自变量x是等价的) 4、函数与其反函数的`关系 函数y=f(x) 函数 定义域 A C 值域 C A 四、应用解题,总结步骤 1、(投影例题) 【例1】求下列函数的反函数 (1)y=3x—1(2)y=x1 【例2】求函数的反函数。 (教师板书例题过程后,由学生总结求反函数步骤。) 2、总结求函数反函数的步骤: 1°由y=f(x)反解出x=f(y)。 2°把x=f(y)中x与y互换得。 3°写出反函数的定义域。 (简记为:反解、互换、写出反函数的定义域)【例3】 (1)有没有反函数? (2)的反函数是________。 (3)(x<0)的反函数是__________。 在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数。在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握。 通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解。 通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力。 题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进。并体现了对定义的反思理解。学生思考练习,师生共同分析纠正。 五、巩固强化,评价反馈 1、已知函数y=f(x)存在反函数,求它的反函数y=f(x) (1)y=—2x3(xR)(2)y=—(xR,且x) (3)y=(xR,且x) 2、已知函数f(x)=(xR,且x)存在反函数,求f(7)的值。 五、反思小结,再度设疑 本节课主要研究了反函数的定义,以及反函数的求解步骤。互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究。 (让学生谈一下本节课的学习体会,教师适时点拨) 进一步强化反函数的概念,并能正确求出反函数。反馈学生对知识的掌握情况,评价学生对学习目标的落实程度。具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性。"问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂。 六、作业 习题2.4第1题,第2题 进一步巩固所学的知识。 【高中数学的教学设计】相关文章: 高中数学的教学设计02-21 高中数学的教学设计05-27 高中数学教学设计02-07 高中数学教学设计03-19 高中数学教学设计【经典】05-23 高中数学片段教学设计03-18 高中数学教学设计【热】03-16 【荐】高中数学教学设计03-15 高中数学教学设计【热门】03-14 高中数学的教学设计【必备】09-23高中数学的教学设计5
高中数学的教学设计6
高中数学的教学设计7
高中数学的教学设计8
高中数学的教学设计9
高中数学的教学设计10
高中数学的教学设计11
高中数学的教学设计12
高中数学的教学设计13
高中数学的教学设计14
高中数学的教学设计15