高中数学说课稿

时间:2025-11-21 19:43:09 高中数学

高中数学说课稿范文集合7篇

  作为一无名无私奉献的教育工作者,时常需要用到说课稿,借助说课稿可以让教学工作更科学化。我们应该怎么写说课稿呢?以下是小编精心整理的高中数学说课稿7篇,欢迎阅读,希望大家能够喜欢。

高中数学说课稿范文集合7篇

高中数学说课稿 篇1

  函数的单调性

  今天我说课的题目是《函数的单调性》,下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、教学过程五方面逐一加以分析和说明。

  一、说教材

  1、教材的地位和作用

  本节内容选自北师大版高中数学必修1,第二章第3节。函数是高中数学的课程,它是描述事物运动变化的模型,而函数的单调性是函数的一大特征,它为我们之后的学习奠定重要基础。

  2、学情分析

  本节课的学生是高一学生,他们在初中阶段,通过一次函数、二次函数、反比例函数的学习已经对函数的增减性有了初步的感性认识。在高中阶段,用符号语言刻画图形语言,用定量分析解释定性结果,有利于培养学生的理性思维,为后续函数的学习作准备,也为利用倒数研究单调性的相关知识奠定了基础。

  教学目标分析

  基于以上对教材和学情的分析以及新课标教学理念,我将教学目标分为以下三个部分:

  1.知识与技能(1)理解函数的单调性和单调函数的意义;

  (2)会判断和证明简单函数的单调性。

  2.过程与方法

  (1)培养从概念出发,进一步研究性质的意识及能力;

  (2)体会数形结合、分类讨论的数学思想。

  3.情感态度与价值观

  由合适的例子引发学生探求数学知识的欲望,突出学生的主观能动性,激发学生学习数学的兴趣。

  三、教学重难点分析

  通过以上对教材和学生的分析以及教学目标,我将本节课的重难点

  重点:

  函数单调性的概念,判断和证明简单函数的单调性。

  难点:

  1.函数单调性概念的认知

  (1)自然语言到符号语言的转化;

  (2)常量到变量的转化。

  2.应用定义证明单调性的代数推理论证。

  四、教法与学法分析

  1、教法分析

  基于以上对教材、学情的分析以及新课标的教学理念,本节课我采用启发式教学、多媒体辅助教学和讨论法。学生可以在多媒体中感受到数学在生活中的应用,启发式教学和讨论法发散学生思维,培养学生善于思考的能力。

  2、学法分析

  新课改理念告诉我们,学生不仅要学知识,更重要的是要学会怎样学习,为终生学习奠定扎实的基础。所以本节课我将引导学生通过合作交流、自主探索的方法理解函数的单调性及特征。

  五、教学过程

  为了更好的实现本课的三维目标,并突破重难点,我设计以下五个环节来进行我的教学。

  (一)知识导入

  温故而知新,我将先从之前学习的知识引入,给出一些函数,比如y=x、y=-x、y=|x|,让学生作出这些函数的图像,然后让学生讨论这些函数图像是上升的还是下降的,由此引入到我的新课。在这个过程中不仅可以检查学生掌握基本初等函数图像的情况,而且符合学生的认知结构,通过学生自主探究,从知识产生、发展的过程中构建新概念,有利于激发学生的思维和学习的积极主动性。

  (二)讲授新课

  1.问题:分别做出函数y=x2,y=x+2的图像,指出上面的函数图象在哪个区间是上升的,在哪个区间是下降的?

  通过学生熟悉的图像,及时引导学生观察,函数图像上A点的运动情况,引导学生能用自然语言描述出,随着x增大时图像变化规律。让学生大胆的去说,老师逐步修正、完善学生的说法,最后给出正确答案。

  2.观察函数y=x2随自变量x变化的情况,设置启发式问题:

  (1)在y轴的右侧部分图象具有什么特点?

  (2)如果在y轴右侧部分取两个点(x1,y1),(x2,y2),当x1

  (3)如何用数学符号语言来描述这个规律?

  教师补充:这时我们就说函数y=x2在(0,+∞)上是增函数。

  (4)反过来,如果y=f(x)在(0,+∞)上是增函数,我们能不能得到自变量与函数值的变化规律呢?

  类似地分析图象在y轴的左侧部分。

  通过对以上问题的分析,从正、反两方面领会函数单调性。师生共同总结出单调增函数的定义,并解读定义中的关键词,如:区间内,任意,当x1

  仿照单调增函数定义,由学生说出单调减函数的定义。

  教师总结归纳单调性和单调区间的定义。注意强调:函数的单调性是函数在定义域某个区间上的局部性质,也就是说,一个函数在不同的区间上可以有不同的单调性。

  (我将给出函数y=x2,并画出这个函数的图像,让学生观察函数图像的'特点,让他们描述函数图像的增减性,慢慢得到函数单调性的概念。在这个过程中,学生把对图像的感性认识转化为了数学关系,这种从特殊到一般的学习过程有利于学生对概念的理解)

  (三)巩固练习

  1练习1:说出函数f(x)=的单调区间,并指明在该区间上的单调性。x

  练习2:练习2:判断下列说法是否正确

  ①定义在R上的函数f(x)满足f(2)>f(1),则函数是R上的增函数。

  ②定义在R上的函数f(x)满足f(2)>f(1),则函数是R上不是减函数。

  1③已知函数y=,因为f(-1)

  1我将给出一些具体的函数,如y=,f(x)=3x+2让学生说出函数的单调区间,并指明在该区间x

  上的单调性。通过这种练习的方式,帮助学生巩固对知识的掌握。

  (四)归纳总结

  我先让学生进行小结,函数单调性定义,判断函数单调性的方法(图像、定义),然后教师进行补充,在这样一个过程中既有利于学生巩固知识,也有利于教师对学生的学习情况有一定的了解,为下一节课的教学过程做好准备。

  (五)布置作业

  必做题:习题2-3A组第2,4,5题。

  选做题:习题2-3B组第2题。

  新课程理念告诉我们,不同的人在数学上可以获得不同的发展,因此要设计不同程度要求的习题。

  篇二:高一数学必修一说课稿

  二次函数的图像说课稿

  今天我说课的题目是《二次函数的图像》,下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计五方面逐一加以分析和说明。

  一、教材分析

  教材的地位和作用

  本节内容选自北师大版高中数学必修1,第二章第4.1节。二次函数的图像在教材中起着承上启下的作用。

  学情分析

  本节课的学生是高一学生,他们在初中的时候已经学习过有关内容,为本节课的学习打下了基础,另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图像由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的能力。

  二、教学目标分析

  基于以上对教材和学情的分析以及新课标教学理念,我将教学目标分为以下三个部分:

  1.知识与技能

  理解二次函数中参数a,b,c,h,k对其图像的影响;

  2.过程与方法

  通过体验对二次函数图像平移的研究方法,能迁移到其他函数图像的研究。

  3.情感态度与价值观

  通过本节的学习,进一步体会数形结合思想的作用,感受到数学中数与形的辩证统一。

  三、教学重难点分析

  通过以上对教材和学生的分析以及教学目标,我将本节课的重难点确定如下

  重点:

  二次函数图像的平移变换规律及应用。

  难点:

  探索平移对函数解析式的影响及如何利用平移变换规律求函数解析式,并能把平移变换规律迁移到其他函数。

  四、教法与学法分析

  1、教法分析

  基于以上对教材、学情的分析以及新课改的要求,本节课我采用启发式教学、多媒体辅助教学和讨论法。学生可以在多媒体中感受到数学在生活中的应用,启发式教学和讨论法发散学生思维,培养学生善于思考的能力。

  2、学法分析

  新课改理念告诉我们,学生不仅要学知识,更重要的是要学会怎样学习,为终生学习奠定扎实的基础。所以本节课我将引导学生通过合作交流、自主探索的方法进行学习。

  五、教学过程

  为了更好的实现本课的'三维目标,并突破重难点,我将设计以下五个环节来进行我的教学。

  (1)知识导入

  温故而知新,我将先从之前学习的知识引入,给出一些函数,比如y=x2、y=2x2,让学生作出这些函数的图像,然后让学生比较这些函数图像的相同点和不同点,由此引入我的新课。一方面让学生总结复习已有知识,为后面的学习做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验。

  (2)讲授新课

  例1:画出函数y=2x2,y=2(x+1)2,y=2(x+1)2+3的图像

  让学生画出他们的图像并观察函数图像的特点,再让学生与多媒体课件展示的图像进行对比,得出结论:若二次函数的解析式为y=ax2+bx+c,先将其化成y=a(x+h)2+k的形式,从而判断出y=ax2+bx+c是如何由y=ax2变换得到的。

  前面的练习和例题,基本涵盖了二次函数图像平移变换的各种情况,启发并引导了学生将实例的结论进行总结,得出y=x2到y=ax2,y=ax2到y=a(x+h)2+k,y=ax2到y=ax2+bx+c(其中,a均不为0)的图像变化过程,即a>0开口向上,a<0开口向下;h正左移,h负右移;k正上移,k负下移。在这个过程中,学生把对图像的感性认识转化为了数学关系,这种从特殊到一般的学习过程有利于学生对概念的理解,

  (3)巩固练习

  我将组织学生进行练习,完成课本44页1-3题。通过这种练习的方式,帮助学生巩固和加深二次函数中参数对图像的影响。

  (4)归纳总结

  我先让学生进行小结,然后教师进行补充,在这样一个过程中既有利于学生巩固知识,也有利于教师对学生的学习情况有一定的了解,可以进行适当反思,为下一节课的教学过程做好准备。

  (5)布置作业

  略

高中数学说课稿 篇2

  各位评委老师好:今天我说课的题目是

  是必修章第节的内容,我将以新课程标准的理念指导本节课的教学,从教材分析,教法学法,教学过程,教学评价四个方面加以说明。

  一、 教材分析

  是在学习了基础上进一步研究 并为后面学习 做准备,在整个高中数学中起着承上启下的作用,因此本节内容十分重要。

  根据新课标要求和学生实际水平我制定以下教学目标

  1、 知识能力目标:使学生理解掌握

  2、 过程方法目标:通过观察归纳抽象概括使学生构建领悟 数学思想,培养 能力

  3、 情感态度价值观目标:通过学习体验数学的科学价值和应用价值,培养善于

  观察勇于思考的学习习惯和严谨 的科学态度

  根据教学目标、本节特点和学生实际情况本节重点是 ,由于学生对 缺少感性认识,所以本节课的重点是

  二、教法学法

  根据教师主导地位和学生主体地位相统一的规律,我采用引导发现法为本节课的主要教学方法并借助多媒体为辅助手段。在教师点拨下,学生自主探索、合作交流来寻求解决问题的方法。

  三、 教学过程

  1、由……引入:

  把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。 在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。

  对于本题:……

  2、由实例得出本课新的知识点是:……

  3、讲解例题。

  我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的.思维能力。在题中:

  4、能力训练。

  课后练习……

  使学生能巩固羡慕自觉运用所学知识与解题思想方法。

  5、总结结论,强化认识。

  知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

  6、变式延伸,进行重构。

  重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。

  四、教学评价

  学生学习的学习结果评价当然重要,但是更重要的是学生学习的过程评价,教师应当高度重视学生学习过程中的参与度、自信心、团队精神合作意识数学能力的发现,以及学习的兴趣和成就感。

高中数学说课稿 篇3

  一、教材分析

  1.教材所处的地位和作用

  本节课所学内容为算法案例3,主要学习如何给一组数据排序,学习作程序框图和设计程序,通过本节课的学习之后将能使许多复杂的问题在计算机上得到解决,减少工作量。

  2 教学的重点和难点

  重点:两种排序法的排序步骤及计算机程序设计

  难点:排序法的计算机程序设计

  二、教学目标分析

  1.知识与技能目标:

  掌握数据排序的原理能使用直接排序法与冒泡排序法给一组数据排序,进而能设计冒泡排序法的程序框图及程序,理解数学算法与计算机算法的区别,理解计算机对数学的辅助作用。

  2.过程与方法目标:

  能根据排序法中的直接插入排序法与冒泡排序法的步骤,了解数学计算转换为计算机计算的途径,从而探究计算机算法与数学算法的区别,体会计算机对数学学习的辅助作用。

  3.情感,态度和价值观目标

  通过对排序法的学习,领会数学计算与计算机计算的区别,充分认识信息技术对数学的促进。

  三、教学方法与手段分析

  1.教学方法:充分发挥学生的主体作用和教师的主导作用,采用启发式,并遵循循序渐进的教学原则。这有利于学生掌握从现象到本质,从已知到未知逐步形成概念的学习方法,有利于发展学生抽象思维能力和逻辑推理能力。

  2.教学手段:通过各种教学媒体(计算机)调动学生参与课堂教学的主动性与积极性。

  四、学法分析

  模仿排序法中数字排序的步骤,理解计算机计算的一般步骤,领会数学计算在计算机上实施的要求。

  五、教学过程分析

  一、创设情境

  提出问题:大家考完试后如果要排一下成绩的话,单靠人手该怎样操作呢?如果我们用计算机里的软件电子表格对分数排序就非常简单,那么电子计算机是怎么对数据进行排序的呢?

  通过这个问题,引出我们这节课所要学习的两种排序方法--直接插入排序法与冒泡排序法

  二、探索新知

  这里我先让学生们阅读课本P30-P31的内容,然后回答下面的问题:

  (1)排序法中的直接插入排序法与冒泡排序法的步骤有什么区别?

  (2)冒泡法排序中对5个数字进行排序最多需要多少趟?

  (3)在冒泡法排序对5个数字进行排序的每一趟中需要比较大小几次?

  提出问题,然后让学生们作出回答,这样可以促使学生们能够积极思考,自主地去学习新的知识,而不只是单向的由老师向学生灌输。

  三、知识应用

  例1 用冒泡排序法对数据7,5,3,9,1从小到大进行排序

  (根据刚刚提问所总结的方法完成解题步骤)

  练习:写出用冒泡排序法对5个数据4,11,7,9,6排序的`过程中每一趟排序的结果.

  (及时将学到的知识应用,有利于知识的掌握)

  例2 设计冒泡排序法对5个数据进行排序的程序框图.

  (在之前所学习知识的基础上画出程序框图,然后给出一个思考题)

  思考:直接插入排序法的程序框图如何设计?可否把上述程序框图转化为程序?

  (之后出一个练习题,找出思考题的答案)

  练习:用直接插入排序法对例1中的数据从小到大排序,画出程序框图,并转化为程序运行求出最终答案。

  (这里可以使学生们领会数学计算与计算机计算的区别,充分认识信息技术对数学的促进。)

  四、课堂小结:

  (1)数字排序法中的常见的两种排序法直接插入排序法与冒泡排序法它们的排序步骤

  (2两种排序法的计算机程序设计

  (3)注意循环语句的使用与算法的循环次数,对算法进行改进。

  通过小结使学生们对知识有一个系统的认识,突出重点,抓住关键,培养概括能力。

高中数学说课稿 篇4

  说课目标

  (1)知识目标:掌握抛物线的定义,掌握抛物线的四种标准方程形式,及其对应的焦点、准线。

  (2)能力目标:通过对抛物线概念和标准方程的学习,培养学生分析和概括的能力,提高建立坐标系的能力,由圆锥曲线的统一定义,形成学生对事物运动变化、对立、统一的辨证唯物主义观点。

  (3)德育目标:通过抛物线概念和标准方程的学习,培养学生勇于探索、严密细致的科学态度,通过提问、讨论、思考等教学活动,调动学生积极参与教学,培养良好的学习习惯。

  教学重点:(1)抛物线的定义及焦点、准线;

  (2)利用坐标法求出抛物线的四种标准方程;

  (3)会根据抛物线的焦点坐标,准线方程求抛物线的标准方程。

  教学难点:(1)抛物线的四种图形及标准方程的区分;

  (2)抛物线定义及焦点、准线等知识的灵活运用。

  说课方法:启发引导法(通过椭圆与双曲线第二定义引出抛物线)。

  依据建构主义教学原理,通过类比、归纳把新知识化归到原有的认知结构中去(二次函数与抛物线方程的对比,移图与建立适当建立坐标系的方法的归纳)。

  利用多媒体教学

  说课过程:

  一、课题引入

  利用学生已有知识提问学生:1、椭圆的第二种定义:到定点与到定直线的距离的比是小于1的常数的点的轨迹是椭圆。(用课件演示)

  2、双曲线的第二种定义:到定点与到定直线的距离的比是大于1的常数的点的轨迹是双曲线。(用课件演示)

  由此引出:到定点的距离和到定直线的距离的比是等于1的常数的点的轨迹

  是什么?

  (以问题为出发点,创设情景,提高学生求知欲)

  教师用直尺、三角板和细绳演示,学生观察所得曲线。

  从而引出本节课的学习内容。

  二、讲授新课

  1.对抛物线的初步认识

  物理中抛物线的运动轨迹;数学中二次函数的图象;生活中抛物线的实例(图片显示)等。

  2.抛物线的定义

  3.抛物线标准方程的推导:①学生回顾求曲线方程的步骤(建系、设点、列方程);

  ②若焦点F和准线的距离为()这样建立坐标系?由学生思考:可能出现的结果:

  四、课堂小结

  1、本节课的内容:抛物线的定义,焦点、准线的意义及四种标准方程;

  2、理解参数的几何意义(焦准距)

  3、利用坐标法求曲线方程是坐标系的适当选取。

  课后作业:119页习题8.52,4

  设计说明:学生在初中学习二次函数时知道二次函数的图象是一个抛物线,在物理的学习中也接触过抛物线(物体的运动轨迹)。因而对抛物线的认识比对前面学习的.两种圆锥曲线椭圆和双曲线更多。所以学生学起来会轻松。但是要注意的是,现在所学的抛物线是方程的曲线而不是函数的图象。本节内容是在学习了椭圆和双曲线的基础上,利用圆锥曲线的第二定义统一进行展开的,因而对于抛物线的系统学习具有双重的目标性。

  抛物线作为点的轨迹,其标准方程的推导过程充满了辨证法,处处是数与形之间的对照和相互转化。而要得到抛物线的标准方程,必须建立适当的坐标系,还要依赖焦点和准线的相互位置关系,这是抛物线标准方程有四种而不象椭圆和双曲线只有两种形式。因而抛物线的标准方程的推导也是培养辨证唯物主义观点的好素材。

  利用圆锥曲线第二定义通过类比方法,引导学生观察和对比,启发学生猜想与概括,利用建立坐标系求出抛物线的四种标准方程,让每一个学生都能动手,动口,动脑参与教学过程,真正贯彻“教师为主导,学生为主体”的教学思想。对于标准方程中的参数及其几何意义,焦点坐标和准线方程与的关系是本节课的重点内容,必须让学生掌握如何根据标准方程求、焦点坐标、准线方程或根据后三者求抛物线的标准方程。特别对于一些有关距离的问题,要能灵活运用抛物线的定义给予解决。

  当前素质教育的主流是培养学生的能力,让学生学会学习。本节课采用学生通过探索、观察、对比分析,自己发现结论的学习方法,培养了学生逻辑思维能力,动手实践能力以及探索的精神。

高中数学说课稿 篇5

  一、教材分析

  1、教材所处的地位和作用

  奇偶性是人教A版第一章集合与函数概念的第3节函数的基本性质的第2小节。

  奇偶性是函数的一条重要性质,教材从学生熟悉的 及入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。因此,本节课起着承上启下的重要作用。

  2、学情分析

  从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。

  从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题、

  3、教学目标

  基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:

  【知识与技能】

  1、能判断一些简单函数的奇偶性。

  2、能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。

  【过程与方法】

  经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。

  【情感、态度与价值观】

  通过自主探索,体会数形结合的思想,感受数学的对称美。

  从课堂反应看,基本上达到了预期效果。

  4、教学重点和难点

  重点:函数奇偶性的概念和几何意义。

  几年的教学实践证明,虽然函数奇偶性这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下面的错误。他们往往流于表面形式,只根据奇偶性的定义检验成立即可,而忽视了考虑函数定义域的问题。因此,在介绍奇、偶函数的定义时,一定要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。因此,我把函数的奇偶性概念设计为本节课的重点。在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。

  难点:奇偶性概念的数学化提炼过程。

  由于,学生看待问题还是静止的、片面的,抽象概括能力比较薄弱,这对建构奇偶性的概念造成了一定的困难。因此我把奇偶性概念的数学化提炼过程设计为本节课的难点。

  二、教法与学法分析

  1、教法

  根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、类比法为辅。教学中,精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力。从课堂反应看,基本上达到了预期效果。

  2、学法

  让学生在观察一归纳一检验一应用的学习过程中,自主参与知识的发生、发展、形成的过程,从而使学生掌握知识。

  三、教学过程

  具体的教学过程是师生互动交流的过程,共分六个环节:设疑导入、观图激趣;指导观察、形成概念;学生探索、领会定义;知识应用,巩固提高;总结反馈;分层作业,学以致用。下面我对这六个环节进行说明。

  (一)设疑导入、观图激趣

  由于本节内容相对独立,专题性较强,所以我采用了开门见山导入方式,直接点明要学的内容,使学生的思维迅速定向,达到开始就明确目标突出重点的效果。

  用多媒体展示一组图片,使学生感受到生活中的对称美。再让学生观察几个特殊函数图象。通过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为学习新知识作好铺垫。

  (二)指导观察、形成概念

  在这一环节中共设计了2个探究活动。

  探究1 、2 数学中对称的形式也很多,这节课我们就以函数和=︱x︱以及和为例展开探究。这个探究主要是通过学生的自主探究来实现的,由于有图片的铺垫,绝大多数学生很快就说出函数图象关于Y轴(原点)对称。接着学生填表,从数值角度研究图象的这种特征,体现在自变量与函数值之间有何规律? 引导学生先把它们具体化,再用数学符号表示。借助课件演示(令 比较 得出等式 , 再令 ,得到 ) 让学生发现两个函数的对称性反应到函数值上具有的特性, ()然后通过解析式给出严格证明,进一步说明这个特性对定义域内任意一个 都成立。 最后给出偶函数(奇函数)定义(板书)。

  在这个过程中,学生把对图形规律的感性认识,转化成数量的规律性,从而上升到了理性认识,切实经历了一次从特殊归纳出一般的过程体验。

  (三) 学生探索、领会定义

  探究3 下列函数图象具有奇偶性吗?

  设计意图:深化对奇偶性概念的理解。强调:函数具有奇偶性的前提条件是--定义域关于原点对称。(突破了本节课的难点)

  (四)知识应用,巩固提高

  在这一环节我设计了4道题

  例1判断下列函数的奇偶性

  选例1的第(1)及(3)小题板书来示范解题步骤,其他小题让学生在下面完成。

  例1设计意图是归纳出判断奇偶性的步骤:

  (1) 先求定义域,看是否关于原点对称;

  (2) 再判断f(-x)=-f(x) 还是 f(-x)=f(x)。

  例2 判断下列函数的奇偶性:

  例3 判断下列函数的奇偶性:

  例2、3设计意图是探究一个函数奇偶性的可能情况有几种类型?

  例4(1)判断函数的奇偶性。

  (2)如图给出函数图象的一部分,你能根据函数的奇偶性画出它在y轴左边的图象吗?

  例4设计意图加强函数奇偶性的'几何意义的应用。

  在这个过程中,我重点关注了学生的推理过程的表述。通过这些问题的解决,学生对函数的奇偶性认识、理解和应用都能提升很大一个高度,达到当堂消化吸收的效果。

  (五)总结反馈

  在以上课堂实录中充分展示了教法、学法中的互动模式,问题贯穿于探究过程的始终,切实体现了启发式、问题式教学法的特色。

  在本节课的最后对知识点进行了简单回顾,并引导学生总结出本节课应积累的解题经验。知识在于积累,而学习数学更在于知识的应用经验的积累。所以提高知识的应用能力、增强错误的预见能力是提高数学综合能力的很重要的策略。

  (六)分层作业,学以致用

  必做题:课本第36页练习第1-2题。

  选做题:课本第39页习题1、3A组第6题。

  思考题:课本第39页习题1、3B组第3题。

  设计意图:面向全体学生,注重个人差异,加强作业的针对性,对学生进行分层作业,既使学生掌握基础知识,又使学有余力的学生有所提高,进一步达到不同的人在数学上得到不同的发展。

高中数学说课稿 篇6

  今天我说课的内容是高二立体几何(人教版)第九章第二章节第八小节《棱锥》的第一课时:《棱锥的概念和性质》。下面我就从教材分析、教法、学法和教学程序四个方面对本课的教学设计进行说明。

  一、说教材

  1、本节在教材中的地位和作用:

  本节是棱柱的后续内容,又是学习球的必要基础。第一课时的教学目的是让学生掌握棱锥的一些必要的基础知识,同时培养学生猜想、类比、比较、转化的能力。著名的生物学家达尔文说:“最有价值的知识是关于方法和能力的知识”,因此,应该利用这节课培养学生学习方法、提高学习能力。

  2. 教学目标确定:

  (1)能力训练要求

  ①使学生了解棱锥及其底面、侧面、侧棱、顶点、高的概念。

  ②使学生掌握截面的性质定理,正棱锥的性质及各元素间的关系式。

  (2)德育渗透目标

  ①培养学生善于通过观察分析实物形状到归纳其性质的能力。

  ②提高学生对事物的感性认识到理性认识的能力。

  ③培养学生“理论源于实践,用于实践”的观点。

  3. 教学重点、难点确定:

  重 点:1.棱锥的截面性质定理 2.正棱锥的性质。

  难 点:培养学生善于比较,从比较中发现事物与事物的区别。

  二、说教学方法和手段

  1、教法:

  “以学生参与为标志,以启迪学生思维,培养学生创新能力为核心”。

  在教学中根据高中生心理特点和教学进度需要,设置一些启发性题目,采用启发式诱导法,讲练结合,发挥教师主导作用,体现学生主体地位。

  2、教学手段:

  根据《教学大纲》中“坚持启发式,反对注入式”的教学要求,针对本节课概念性强,思维量大,整节课以启发学生观察思考、分析讨论为主,采用“多媒体引导点拨”的教学方法以多媒体演示为载体,以“引导思考”为核心,设计课件展示,并引导学生沿着积极的思维方向,逐步达到即定的教学目标,发展学生的逻辑思维能力;学生在教师营造的“可探索”的环境里,积极参与,生动活泼地获取知识,掌握规律、主动发现、积极探索。

  三、说学法:

  这节课的核心是棱锥的截面性质定理,.正棱锥的性质。教学的指导思想是:遵循由已知(棱柱)探究未知(棱锥)、由一般(棱锥)到特殊(正棱锥)的认识规律,启发学生反复思考,不断内化成为自己的认知结构。

  四、 学程序:

  [复习引入新课]

  1.棱柱的性质:

  (1)侧棱都相等,侧面是平行四边形

  (2)两个底面与平行于底面的截面是全等的多边形

  (3)过不相邻的两条侧棱的截面是平行四边形

  2.几个重要的四棱柱:

  平行六面体、直平行六面体、长方体、正方体

  思考:如果将棱柱的上底面给缩小成一个点,那么我们得到的将会是什么样的体呢?

  [讲授新课]

  1、棱锥的基本概念

  (1).棱锥及其底面、侧面、侧棱、顶点、高、对角面的概念

  (2).棱锥的表示方法、分类

  2、棱锥的性质

  (1). 截面性质定理:

  如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比

  已知:如图(略),在棱锥S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并与SH交于H’。

  证明:(略)

  引申:如果棱锥被平行于底面的.平面所截,则截得的小棱锥与已知棱锥

  的侧面积比也等于它们对应高的平方比、等于它们的底面积之比。

  (2).正棱锥的定义及基本性质:

  正棱锥的定义:

  ①底面是正多边形

  ②顶点在底面的射影是底面的中心

  ①各侧棱相等,各侧面是全等的等腰三角形;各等腰三角形底边上的高相等,它们叫做正棱锥的斜高;

  ②棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;

  棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形

  引申:

  ①正棱锥的侧棱与底面所成的角都相等;

  ②正棱锥的侧面与底面所成的二面角相等;

  (3)正棱锥的各元素间的关系

  下面我们结合图形,进一步探讨正棱锥中各元素间的关系,为研究方便将课本 图9-74(略)正棱锥中的棱锥S-OBM从整个图中拿出来研究。

  引申:

  ①观察图中三棱锥S-OBM的侧面三角形状有何特点?

  (可证得∠SOM =∠SOB =∠SMB =∠OMB =900,所以侧面全是直角三角形。)

  ②若分别假设正棱锥的高SO= h,斜高SM= h’,底面边长的一半BM= a/2,底面正多边形外接圆半径OB=R,内切圆半径OM= r,侧棱SB=L,侧面与底面的二面角∠SMO= α ,侧棱与底面组成的角 ∠SBO= β, ∠BOM=1800/n (n为底面正多边形的边数)请试通过三角形得出以上各元素间的关系式。

  (课后思考题)

  [例题分析]

  例1.若一个正棱锥每一个侧面的顶角都是600,则这个棱锥一定不是( )

  A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥

  (答案:D)

  例2.如图已知正三棱锥S-ABC的高SO=h,斜高SM=L,求经过SO的中点且平行于底面的截面△A’B’C’的面积。

  ﹙解析及图略﹚

  例3.已知正四棱锥的棱长和底面边长均为a,求:

  (1)侧面与底面所成角α的余弦(2)相邻两个侧面所成角β的余弦

  ﹙解析及图略﹚

  [课堂练习]

  1、 知一个正六棱锥的高为h,侧棱为L,求它的底面边长和斜高。

  ﹙解析及图略﹚

  2、 锥被平行与底面的平面所截,若截面面积与底面面积之比为1∶2,求此棱锥的高被分成的两段(从顶点到截面和从截面到底面)之比。

  ﹙解析及图略﹚

  [课堂小结]

  一:棱锥的基本概念及表示、分类

  二:棱锥的性质

  截面性质定理:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比

  引申:如果棱锥被平行于底面的平面所截,则截得的小棱锥与已知棱锥的侧面积比也等于它们对应高的平方比、等于它们的底面积之比。

  2.正棱锥的定义及基本性质

  正棱锥的定义:

  ①底面是正多边形

  ②顶点在底面的射影是底面的中心

  (1)各侧棱相等,各侧面是全等的等腰三角形;各等腰三角形底边上的高

  相等,它们叫做正棱锥的斜高;

  (2)棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形

  引申: ①正棱锥的侧棱与底面所成的角都相等;

  ②正棱锥的侧面与底面所成的二面角相等;

  ③正棱锥中各元素间的关系

  [课后作业]

  1:课本P52 习题9.8 : 2、 4

  2:课时训练:训练一

高中数学说课稿 篇7

  【教材分析】

  1、本节教材的地位与作用

  本节主要研究闭区间上的连续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值”,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题。这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有极为重要的意义。

  2、教学重点

  会求闭区间上连续开区间上可导的函数的最值。

  3、教学难点

  高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优化解题过程依据的理解会有较大的`困难,所以这节课的难点是理解确定函数最值的方法。

  4、教学关键

  本节课突破难点的关键是:理解方程f′(x)=0的解,包含有指定区间内全部可能的极值点。

  【教学目标】

  根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标:

  1、知识和技能目标

  (1)理解函数的最值与极值的区别和联系。

  (2)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值。

  (3)掌握用导数法求上述函数的最大值与最小值的方法和步骤。

  2、过程和方法目标

  (1)了解开区间内的连续函数或闭区间上的不连续函数不一定有最大、最小值。

  (2)理解闭区间上的连续函数最值存在的可能位置:极值点处或区间端点处。

  (3)会求闭区间上连续,开区间内可导的函数的最大、最小值。

  3、情感和价值目标

  (1)认识事物之间的的区别和联系。

  (2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题。

  (3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神。

  【教法选择】

  根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用。

  本节课在帮助学生回顾肯定了闭区间上的连续函数一定存在最大值和最小值之后,引导学生通过观察闭区间内的连续函数的几个图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行适当的引导,而不进行全部的灌输。为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学。

  【学法指导】

  对于求函数的最值,高三学生已经具备了良好的知识基础,剩下的问题就是有没有一种更一般的方法,能运用于更多更复杂函数的求最值问题?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用。

  【教学过程】

  本节课的教学,大致按照“创设情境,铺垫导入——合作学习,探索新知——指导应用,鼓励创新——归纳小结,反馈回授”四个环节进行组织。

【高中数学说课稿】相关文章:

高中数学数列说课稿07-16

高中数学说课稿09-30

高中数学说课稿11-23

高中数学说课稿范文06-17

高中数学说课稿范文09-10

高中数学说课稿5篇05-30

【精选】高中数学说课稿4篇08-22

高中数学说课稿3篇12-25

精选高中数学说课稿四篇12-06

高中数学说课稿八篇12-02