《最小公倍数》教学反思

时间:2024-05-24 08:04:25 教学反思 我要投稿
  • 相关推荐

《最小公倍数》教学反思

  作为一位优秀的老师,课堂教学是重要的工作之一,通过教学反思可以有效提升自己的教学能力,那么问题来了,教学反思应该怎么写?以下是小编帮大家整理的《最小公倍数》教学反思,欢迎阅读,希望大家能够喜欢。

《最小公倍数》教学反思

《最小公倍数》教学反思1

  本节课我发现对特殊方法求几个数的最小公倍数,倍数关系的学生掌握得快,但用乘积找最小公倍数的规律(特点),给学生思考交流的时间有些少,学生找到的特点有局限性,老师也没有及时给予提示。比如:当是奇数和偶数时,最小公倍数不一定就是这两数的`乘积。如6和9的最小公倍数是18而不是54。这一特点是偶然现象不是普遍规律。可引导学生对四组数字再比较,引导发现他们因数的特征(公因数只有1)使学生形成准确的认识。造成这一失误的原因一方面是由于时间的紧,另一方面担心复习公因数会影响新知识的学习。其三是对教材的钻研不够,自己对这一部分知识把握也不准。其次,由于在时间的控制上不恰当,后面部分任务还没有完成。

《最小公倍数》教学反思2

  《找最小公倍数》这节课我以游戏导入,先激起学生们学习的兴趣。2的倍数和5的倍数起立看谁反应快,哪些同学站起来了两次从而引出课题。要把学习的主动权交给学生,让他们给既是2的倍数,也是5的倍数的这些数起名字,可以加深他们对公倍数的理解和记忆。通过一个练习让他们自己总结公倍数和最小公倍数的概念。试一试的第一题通过填集合圈的方法来找最小公倍数,让他们学会多种方法找最小公倍数。

  我的不足

  1、在用列举法找8和12的最小公倍数的时候,在下面有的同学没找全倍数,我没有及时的提出他们的问题所在,而是直接让他们坐下改正,没有集中反馈。

  2、在试一试的第一题,我们做的题是要求50之内的,我没有强调当没有范围的时候应该怎么填,这少个强调的点。

  3、练一练的第一题,学生填好表格后我没有引导他们这个过程就是在找8和6的倍数,而是直接对完答案后就过去了。

  4、在找规律的.那组题的时候,学生做完了后让他们自己说出规律叫的学生比较少,应该给他们足够的时间去说出自己所找出的规律。

  5、解决实际问题,在这道题上学生理解的比较好,第一个问题的答案我的PPT用的荧光黄色,这个同学们根本看不清,在课件字的颜色上有问题。还有一个让他们自己提出问题并解决,我没给他们足够的时间去提问和解决,而是着急着进入下个我设计好的环节。

  6、在最后一个环节上“你知道吗”可以带着他们一起尝试着用短除法做一道题,这样时间就正好,也可以让他们更了解一下如何用短除法去求最小公倍数。

  总的来说这节课对于学生做题的反馈我没有及时的提出学生所存在的问题,即使是极少数同学存在的问题也不能放过,也要集中讲一下他为什么出现了这个错误和改正的方法。没有给学生足够的时间而是一味的想让他们按照我设计好的程序去进行。应该把主动权和时间交给学生,让他们去发现规律,让他们去发现错误并改正。

《最小公倍数》教学反思3

  一、本知识点是人教版《数学》第十册第三单元最后一个知识点。

  二、在集备中,我对这个课时的教学重点和突出重点的策略作了如下的分析:

  教学重点

  最大公约数、最小公倍数比较

  本重点包含的要素

  短除法、最大公约数、最小公倍数

  与其他重点的联系

  短除法、质因数、公有的质因数

  突出重点的策略

  (1)、用短除法求两个数们最大公约数和最小公倍数,直接用抽象出的方法:短除法;

  (2)、尽可能避免涉及约数、公约数、倍数、公倍数、分解质因数的知识。在前面四个课时的准备下,进入到抽象的领域,强化抽象思维能力的训练;

  (3)、通过做一做的练习,揭示出一个综合的方法,即求两个数的最大公约数和最小公倍数时,只需要一个短除法式子就可以了。所有的除数相乘得到的是最大公约数,所有的除数和所将的商相乘,得到的是最小公倍数。

  另外,就这个课时的教学难点进行了分析并就这个难点提出了解决策略:

  教学难点

  (1)、分别用短除法求最大公约数与最小公倍数到综合在一个短除法里进行,归纳、总结能力受到挑战;

  (2)、在没有其他知识准备的情况下,直接进入用短除法求,抽象思维训练有一定的阻力。

  原因分析

  (1)、学生归纳、总结的能力不一;

  (2)、虽然短除法在前面已经学了几个课时,但毕竟是新知识且综合运用的要求较高及有较强的抽象性。

  解决策略

  (1)、用比较、对比的方法去研究两个相关的知识点,成效较大且容易强化。用这个方法克服归纳、总结的能力弱点是比较有效的。建议老师可以提前在三年级就可以开始有意无意的涉及,在现在的学习,就会受益无穷了。

  (2)、在课程,例5还是用两个短除法,然后才去比较。在以后的练习里,必须强调只用一个短除法就可以解决。所以,对于中下生,老师还须在做一做的练习前,举一个用一个短除法求两个数的最大公约数和最小公倍数的例子,对照归纳、总结的内容。这样,对方法的掌握会更加有帮助。

  三、上课前一天的备课中,考虑到本班学生中下面较大的实际情况,决定上课的时候实施渐进的方法,即不是一开始就推出短除法,先允许有可能出现的其他方法,再通过比较,选择一种方法,有意无意的在短除法中去展开比较。这样,对于选择其他方法求出两个数的最大公约数和最小公倍数的同学来说,也给予一定的过渡空间。

  四、上课时的个别片断:

  (1)、进入新课前的谈话,不涉及方法,只是说,我们在前面已经学习了求两个数的最大公约数和最小公倍数,今天,我们主要来研究一下求这两种数的方法上的异同(板书:最大公约数、最小公倍数比较)。

  (2)、在课题的右下方板书:例五:求28和42的最大公约数和最小公倍数。让学生在练习本上先做出来。

  (3)、粗略统计

  最快的差不多1分钟完成,

  到一分半钟时,有15人完成,

  2分钟时有45位完成,

  到2分半钟时,还有5位没完成。

  (4)、投影最快完成的同学的书写,用了两个短除法,由于投影幕挡住了右半面黑板,所以,只能板书在中间靠右的位置上;投影方法不同的同学的书写,用的是一个短除法,继续板书在黑板靠左的位置上;方法不同的还有分解质因数法;没有人用枚举法,也没有人用大数翻倍法。

  (5)、粗略统计

  用一个短除法的有6人,

  用两个短除法的有42人,

  用分解质因数法的有4人,

  两位男同学在玩,没写,

  一位女同学病了,请假。

  用时少的都是用一个短除法或两个短除法求的同学。

  (6)、请大家说说,求两个数的最大公约数和最小公倍数,方法上有什么相同点。

  △、都可以用短除法去求;

  △、也都可以用分解质因数法去求;

  △、用短除法去求得话,要除到最后的两个商互质;

  △、它们一样都从2除起;

  △、也可以先除以7;

  △、也可以直接除以14;

  接着,请大家说说不同点。

  △、求最大公约数只是把所有的除数乘起来,而求最小公倍数的话,还要把所得的商也乘起来。

  没有同学提到用分解质因数的方法时的相同与不同点,我也就不再去提出。小结重复一遍同学所找到的相同与不同点。

  指导看书时,有一位不做练习的同学突然提问:用短除的形式进行分解是什么意思?没办法,请了三位同学说了,不知是否说清楚了这一句话的.意思。

  △、第一个同学说:用短除的形式,就是用短除法的意思;

  △、第二个同学说:用短除的形式进行分解,就是用短除法把一个数分解成一个一个的质因数;

  △、第三个同学说:用短除的形式进行分解,就是我们现在用的短除法。

  对于这一句话的解释,对中差生来说可能会纠缠不清。所以,我也就不再展开下去。

  (7)、转移话题,大家比较一下,黑板上板书的两位同学的求法,有什么看法。基本上都说用一个短除法式子简单一点。在这里,又重复了一遍用一个短除法式子求得话,先用容易看出的两个数的相同质因数去除,最后的两个商必须是互质的,把所有的除数乘起来,就是这两个数的最大公约数,把所有的除数和两个商都乘起来,就是这两个数的最小公倍数。转入,如果换两个数又如何?请看P80做一做。

  五、课后反思

  (1)、集备的时候,有点凭空想象的意思,通过对教材的分析,认为重点是什么,难点又是什么;至于制定的策略多少也有一点偏颇。所以,临到上课时备课的对学生的考虑或是上课时的因地制宜的调整是很正常的;

  (2)、上这个课的时候,因为有前面四、五个课时的准备,老师在准备上可能会有所松懈,上课的时候也会平淡如水,不容易调动起学生的热情,自然会引起对方法的提炼用时过少或不全面或渗透不深。要能够让大多数学生有一种根深蒂固的感觉,就必须在方法的对比上花一点功夫。当然,只用一个短除法式子求两个数的最大公约数和最小公倍数,看起来简单,上课也多次强调,但作业里就还有人还用两个短除法式子,单元测试里也有人用两个短除法式子,这也是无可奈何的事。

  (3)、以集备分析为基础,以集备的策略、方法为主导,根据学生的实际情况,根据上课时的动态适当调整,任何课都能上好。

《最小公倍数》教学反思4

  新课标教材对最小公倍数的求法给出了三、四种不同方法。有分别写出各自倍数,再从中找出最小公倍数的方法;有先写出某一个数的倍数,再从小到大依次判断它们是否是另一个数的倍数,从而找到最小公倍数的方法;有利用分解质因数求最小公倍数的方法;还有部分学生在校外培训时学习的简单快捷的短除法。这么多的方法,作为教师有必要在课堂教学中指导学生合理优化。但哪种更优呢?我认为真正适合孩子们,最快捷又最容易理解的最小公倍数求法应该是:先依次写出较大数的倍数,然后从小到大判断它们是否是较小数的.倍数。

  为什么这种方法最优?

  1、快捷。因为当最小公倍数较小(即在100以内)时,用这种方法可以仅仅通过口算就快速求出结果。

  2、易懂。用上述方法找最小公倍数,与概念一脉相承,比用分解质因数的方法求最小公倍数更利于学生理解。

  什么促使我反思?

  以前教五年级的学生时,我发现学生普遍喜欢用分母的乘积作为公分母。虽然,多次建议用最小公倍数作公分母会使计算数据相对较小,可仍旧无效。原因何在?与学生交流后才得知:无论是用第一种列举法找,还是用分解质因数的方法求最小公倍数都需要找草稿,太麻烦。如果最小公倍数的求法在通分中完全用不上绝对是教学的失败。失败在哪里,麻烦如何解决?经过反思,我发现原来方法并非最优。

  本次教学我并未教分解质因数的方法,当然也没有教短除法,推荐学生用先依次写出较大数的倍数,然后从小到大判断它们是否是较小数的倍数的方法,效果很好。

《最小公倍数》教学反思5

  一、为学生提供生活化的问题情境,使得学生在问题的解决中建构知识体系。

  建构主义认为,知识的获得不是由传递完成的,知识只能在综合的学习情景中被交流。现代教育观点认为:学习不是为了占有知识,而是为了生长知识,因此在教学中,我们不要教给学生现成的知识,而是让学生自己去观察、思考、探索研究出数学。为此,这节课一开始就为同学们提供了一个具体的问题情境:“从十月一日起,小兰的妈妈每4天休息一天,爸爸每6天休息一天,他们打算等爸爸妈妈休息时,全家一块儿去公园玩。那么在这一个月里,他们可以选哪些日子去呢?你会帮他们把这些日子找出来吗?”让学生通过解决这个生动具体的实际问题,获得对公倍数、最小公倍数概念内部结构特征的直接体验,积累数学活动的经验;在此基础上,再引导学生从生活“进到数学”,通过对实际问题的反思抽象,引出公倍数、最小公倍数等数学概念,并通过对解决问题过程的进一步提炼,总结出求公倍数和最小公倍数的方法。

  二、重视学生获取知识的过程

  如上所述,学生获取知识过程花的时间可能也要稍多一些,但是这一过程中,学生的学习积极性和主动性被充分地调动了起来,当他们面对那些生动有趣的实际问题时,会自觉地调动起已有的生活经验和那些“自己的”思维方式参与解决问题的过程中来,主动地借助已有的知识经验用学过的一些方法来展示自己内部的思维过程。在这一过程中,学生不仅能清楚地体会到数学的内部联系,而且能真切地体会到数学与外部生活世界的联系,体会到数学的特点和价值,体会到“数学化”的真正含义,从而帮助他们获得对数学的正确认识。

  在学会了基本概念之后,引导学生运用列举法找几个数的公倍数和最小公倍数,在练习了完成之后,教师引导学生观察其中的规律提出猜想和假设,然后通过每个小组的验证得到规律,在这个过程中,学生不仅发现了特殊关系的`两个数的最小公倍数的简便求法,更重要的是,培养了学生的能力和严谨的学习态度和初步的学习数学的方法,培养同学之间的协作精神。

《最小公倍数》教学反思6

  教学内容:五年级下册P22—24内容教学目标:1、在解决问题的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数独有的倍数和它们的公倍数。2、探索两个数的公倍数、最小公倍数的方法,能用列举法找到10以内的两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。3、在自主探索与合作交流活动中,进一步发展与同伴进行合作交流的意识与能力,获得成功体验,学会欣赏他人。

  教学过程:

  一、解决问题:

  1、呈现问题:

  (1)猜一猜用长3cm、宽2cm的长方形纸片分别铺边长为6厘米和8厘米的两个正方形。可以正好铺满哪个正方形?

  学生说猜想结果和想法。

  (2)实践验证:

  请小组拿出小长方形和画有正方形的纸,动手铺一铺。

  (3)反馈交流:

  A肯定:哪个正方形正好铺满?B质疑:为什么边长12cm的正方形能正好铺满,而边长16厘米的正方形不能正好铺满呢?C交流:结合学生思路板书有关算式D我们发现:6cm既是2的倍数,又是3的倍数,所以能正好铺满,8cm虽是2的倍数,但不是3的倍数,所以不能正好铺满。

  (4)深入探索:

  这样的长方形纸片还能正好铺满边长是多少厘米的正方形呢?

  (5)反馈交流:

  A板书数据:6、12、18、24……

  B说理:为什么这些边长的正方形也都能正好铺满?你能举其中一个例子来说一说吗?其中最小的边长是6厘米,能找到比6厘米更小的边长吗?

  C小结:我们发现,能正好铺满的正方形,边长的厘米数既是2的倍数,又是3的倍数。

  2、揭示概念

  (1)揭示:6、12、18、24……既是2的倍数,又是3的倍数,它们是2和3的公倍数。(2)提问:A2和3的公倍数中的……表示什么意思呢?揭示:2和3的公倍数的.个数是无限的。B2和3的公倍数中,谁是最小的?有没有比6更小的了呢?揭示:2和3的最小公倍数是6。

  (3)辨析:16是2和3的公倍数吗?为什么?

  二、探索方法,优化策略。

  同学们,我们知道了什么是公倍数、最小公倍数,下面让我们一起来找一找两个数的最小公倍数,不过要同学们自己来探索,自己来寻找方法,有信心吗?

  1、呈现例26和9的公倍数有哪些?其中最小的公倍数是几?

  2、学生探索先独立思考,再小组交流,比一比,哪个组想的方法多,想得方法好。

  3、反馈呈现多种方法

  方法一:列举法分别求6和9的倍数,再找公倍数、最小公倍数。

  方法二:先找出6的倍数,再从6的倍数中找出9的倍数

  方法三:先找出9的倍数,再从9的倍数中找出6的倍数

  可能出现方法四:先找到最小公倍数,再找出最小公倍数的倍数。

  4、评价方法:

  方法一与方法二、方法三比,你有什么想法?方法二与方法三比,你有什么想法?方法四不失为一种好方法,但要找到最小公倍数,我们通常要用到前面几种方法来找最小公倍数。

  5、出示集合图。

  6、小结:通过同学们积极思考,大胆交流,我们找到了多种方法来求公倍数、最小公倍数,在解决问题时,我们可以选用自己喜欢的方法来解决问题。

  三、综合练习,拓展提升。

  1、完成练一练

  2、完成练习四1——4

  3、比一比,看谁找得快,找出下列每组数的最小公倍数。8和25和73和910和45和109和104和81和54和54

  四、全课总结,畅谈收获。

  五、解决实际问题(见小小设计师)

  药物研究所研究出一种新药,经临床试验成功后决定向市场推广,这种药成人每天吃2次,每次2片,一天一共吃4片;儿童每天吃3次,每次1片,一天一共吃3片;如果你是药厂包装设计师,每一版药你认为设计多少颗比较合理,说说你的理由。

  教学反思:

  本课内容是学生四年级学习的延续,在四年级(下册)教材里,学生已经建立了倍数和因数的概念,会找10以内自然数的倍数,100以内自然数的因数。这课教学公倍数和最小公倍数,要学生理解公倍数和最小公倍数的意义,学会找两个数的公倍数和最小公倍数的方法,为后面学习公因数、最大公因数的意义,会求公因数、最大公因数的方法,进行通分、约分和分数四则计算作充分全面的准备。作为全新的课改内容,本课教材编排与旧教材相比,改革的力度较大,体现了浓郁的课改气息,具体体现在以下几方面:

  1、润物细无声:在解决实际问题中理解概念。用长3厘米宽2厘米的小长方形去铺边长分别是6厘米、8厘米的正方形,哪个能正好铺满?教材以学生喜欢的操作情景入手,激发学生探索的欲望,在探索中生成问题:怎样的正方形肯定能正好铺满?怎样的不行?像这样能正好铺满的正方形还能找到吗?引发学生深入探索,在充分探索观察的基础上发现:能正好铺满的正方形的边长正好既是小长方形长的倍数,又是宽的倍数。这时引入公倍数的概念自然是水到渠成,学生觉得很自然、亲切,觉得解决的问题是有价值的,公倍数的概念也是现实的、有意义的鲜活概念。

  2、多样呈精彩:在找两个数的公倍数和最小公倍数的时候,采用全开放的方式,放大学生思维空间让学生自由探索,以小组交流形成思维碰撞,呈现多彩的智慧。以评价促方法的对比,以评价促思维的深入,以评价促探索精神的提升,学生自然自得其乐,收获多多。

  3、适度显睿智。在练习部分,教材能尊重学生的思维差异,能尊重学生的心理需求,让学生选用喜欢的方法去解决问题,这是适度体现的其一。其二对求两个数的公倍数、最小公倍数,教材抛弃了短除法的方法,而只要学生找10以内数的公倍数、最小公倍数,降低了学习要求,更符合学生实际。

《最小公倍数》教学反思7

  最小公倍数是人教版教材第88-90页的内容,是在学生掌握因数、倍数和公因数等概念的基础上进行教学的,主要是为后面学习通分进行异分母分数加减法、异分母分数比较大小做准备的,在生活实际中也存在很大作用。教材采用“找”的方法,让学生领悟两个数的最小公倍数的概念。本节课我是从以下环节教学的,感觉达到了预期效果。

  一、复习旧知,巧妙无痕揭示新概念。

  在课一开始,我利用小学生争胜心强的心理特点,让学生比赛写出50以内4的倍数和6的倍数。学生写完后,让他们从写出的4的倍数和6的倍数中挑选出两数的相同倍数,并让学生尝试给4和6相同的倍数取名字,有的同学起名“4和6的同倍数“,有的取名“4和6的共倍数”,还有的取名“4和6的公共倍数”等,我表扬孩子有创意之后,在“4和6的公共倍数”的基础上给孩子统一了一下,叫做“这些相同的倍数叫做4和6的公倍数”,接着说道,4和6这两个数有公倍数,其他任何两个自然数都有公倍数,并追问,什么是两个数的公倍数,学生异口同声的回答“两个数倍数中相同数,既是一个数的倍数,也是另一个数的倍数,这样的数叫做两个数的公倍数。”看到学生已经明白公倍数的含义,我接着说道,因为一个数的倍数的个数是无限的,没有的倍数,所以两个数的公倍数的个数也是无限多,也没有公倍数,但是有最小公倍数,4和6的最小公倍数是几呢?(12)为了让学生对公倍数和最小公倍数的概念有个确切的认识,让学生看课本109页的内容。就这样一边复习,一边谈话,巧妙无痕的揭示了本节课的概念。

  二、让学生体会学习最小公倍数的意义。

  通过多媒体的特殊功能,让学生集观察、思考与一体,并动手操作,体会最小公倍数学习的意义。(课件出示:)学生读题,明白题意后,便让他们四人一组用事先准备好的小长方形纸片去铺这个正方形。铺完后,都有所感悟,发现能铺完,这时问学生知道为什么能正好铺完吗?部分学生说正方形的边长正好是小长方形长的倍数,也是小长方形宽的倍数,是2和3的`公倍数。接着让学生思考用这个小长方形还能铺满边长是几厘米的正方形,学生争先恐后的回答“12、18、24......,因为这些数既是2的倍数,也是3的倍数,也就是2和3的公倍数。”看到学生大都明白题意,我开始让学生猜测,可能铺满边长是9厘米、10厘米的正方形吗?为什么?孩子们都抢答说,不能,因为9和10都不是2和3的公倍数。孩子们最后总结出铺满的正方形的边长必须是两个数的公倍数,并说道所铺满的正方形的边长最小是6 厘米。正好是长和宽的最小公倍数。从而真正感受到学习最小公倍数的意义。

  三、引导学生迁移类推,发展能力。

  因为在此之前学生已经学习了找两个数的公因数的方法,接着引导学生根据找两个数的公因数的方法,大胆迁移、类推、探索出找两个数的最小公倍数的方法。从而获得能力上的发展。学生迁移出了四种找最小公倍数的方法。

  1、列举法,先列举出两个数的一些倍数,从中找出他们的公倍数,并从公倍数中找出最小公倍数;

  2、筛选法,先写出较大数的一些倍数,从中筛选出较小数的倍数,就是两个数的公倍数,其中最小的一个就是他们的最小公倍数;

  3、分解质因数法,先把两个数分别用短除法分解质因数。因为用分解质因数法求两个数的最小公倍数与公因数有一定的差异,所以我以18和12为例重点介绍了这种方法,先让学生分别把两个数分解质因数,接着把18、12 的最小公倍数36也分解质因数,让学生从最小公倍数36所分解的质因数中,找一找包含了18和12两个数中的哪些质因数?通过观察,学生发现最小公倍数 36中既包含了12、18全部公有的质因数,也包含了两个数各自独有的质因数,也就是18和12的最小公倍数是两数所有公有质因数和各自独有质因数的乘积,趁次机会把找18和12的最小公倍数与找18和12的公因数的方法作了对比,使学生有个较清楚的认识;

  4、短除法同时分解两个数,求最小公倍数,因为这种方法仅仅是把两个数分解质因数的短除式合并在了一起,所以没多做介绍,重点说了说用短除式求两个数的最小公倍数把所有除数(即公有质因数)和商(各自独有的质因数)相乘。针对每种找两个数的公因数的方法,学生边说边举例,并进行了适量的练习。

《最小公倍数》教学反思8

  教学目标:

  (一)进一步理解并掌握最大公约数和最小公倍数的概念,分清求最大公约数和最小公倍数的相同点和不同点。

  (二)培养学生仔细、认真的做题习惯和比较的思维方法。

  (三)培养学生观察、分析、比较的能力。

  教学重点和难点:

  最大公约数和最小公倍数异同点的比较。

  教学用具:教具:小黑板,投影片。

  教学过程设计:

  (一)复习准备

  1、什么叫最大公约数和最小公倍数?怎样求最大公约数和最小公倍数?

  2、求下面各题的最大公约数和最小公倍数?(口答)

  8和16,13和26,2和9,7和15

  教师:对上面几道题你是怎么想的?各有什么特点?

  明确:①两个数有倍数关系,最大公约数最较小数,最小公倍数是较大数。

  ②两个数互质,最大公约数是1,最小公倍数是两个数乘积。

  (二)学习新课

  1.出示例4。

  求30和45的最大公约数和最小公倍数。(要求学生独立完成。)

  学生口述教师板书。33045

  51015

  23

  30和45的最大公约数是:3×5=15

  33045

  51015

  23

  30和45的最小公倍数是:3×5×2×3=90

  教师:观察上面两道题,谁能说出求最大公约数和求最小公倍数有什么地方相同?什么地方不同?(讨论)

  在讨论的基础上,总结出下面的结论。

  求两个数的最大公约数

  求两个数的最小公倍数

  相同点

  都要用短除法分解质因数

  不同点

  只要把除得的除数相乘

  把除得的除数和商都相乘

  教师:为什么求最大公约数只要把所有除数乘起来,而求最小公倍数就要把所有除数和商都乘起来呢?

  明确:求最大公约数是两个数公有质因数的积;求最小公倍数既要包含两个数公有质因数,又要包括各自独有的质因数。

  教师:既然求两个数的最大公约数和最小公倍数的短除过程是相同的,那么,我们就可以用一个短除式来表示。例4怎样做简便?(由学生完成。)

  2.出示做一做。

  根据下面的短除,你能很快说出42和56的最大公约数和最小公倍数吗?

  24256

  72128

  34

  (三)巩固反馈

  1.求下面各组数的最大公约数和最小公倍数。

  30和18,75和35,16和72

  9和31,20和12,100和30

  2.判断正误并说明理由。

  ①互质的两个数没有最大公约数;

  ②两个数的最小公倍数,是这两个数的最大公约数的倍数;

  ③a与b的最大公约数是1,那么a与b的最小公倍数是ab;

  ④用短除法求两个数的最小公倍数时,可以用这两个数的公约数连续去除。

  ⑤17和51的最大公约数是17,

  最小公倍数是:17×51=867。

  3.选择正确答案的序号填在里。

  (1)已知甲、乙两个数互质,那么甲、乙最大公约数是,最小公倍数是。

  ①1,②甲,③乙,④甲×乙

  (2)已知a=2×3×2,b=2×3×5,那么a,b的最大公约数是,最小公倍数是。

  ①2×3②2×3×2③2×3×5④2×3×2×5

  (四)课堂总结(学生总结)

  1.求两个数的最大公约数,最小公倍数用一个短除式。

  2.求最大公约数把所有的除数乘起来,求最小公倍数把所有的除数和商乘起来。

  (五)布置作业:课本65页练习十一,11、12

  课堂教学设计说明

  本节新课教学分为两部分。

  第一部分,教学例4,由学生独立求出最大公约数和最小公倍数。

  第二部分,对比例4中最大公约数,最小公倍数的求法,讨论它们有什么异同点,结合算理找出解法不同之处的内在原因,从而总结出结论。

  教学反思:知其然且知所以然——摆脱纯技能的训练

  本节课教学是在学生学习分别求最大公约数和最小公倍数的基础上进行的,目的是让学生能够区分并深入理解求最大公约数和最小公倍数的方法。在掌握方法时还需要多问一个为什么。比如求30和45的最大公约数和最小公倍数中,为什么3×5=15是两数的最小公倍数,3×5×2×3=90是两数的最小公倍数?对于这一点,应该让学生透过题目表面的理解,寻求对它本质的掌握。教学中在安排学生独立完成例题后,分组讨论此题求最大公约数和最小公倍数有什么异同点,由学生列表得出结论。进一步引发学生思考为什么求最大公约数是把所有除数相乘,而求最小公倍数是把所有除数和商相乘?使学生深入、透彻地理解求最大公约数和最小公倍数的方法。

  或许,这样的题目经过机械的训练,也能达到会做类似的'题目的效果,但是如果换成12=2×2×3,30=2×3×5,求12和30的最大公约数和最小公倍数,你还能保持高的正确率吗?恐怕很难。甚至还会有这样的题目:m=a×b×c,n=a×c×c,求m和n的最小公约数和最小公倍数,恐怕这次做对的就更少了。所以只有学生明白了算理:两数最大公约数是两数的所有公有的质因数的乘积,两数最小公倍数是两数所有公有的质因数和独有的质因数的乘积,才能有效正确地解答。

  所以,在进行技能训练的时候,还要多问一个为什么,让学生搞清楚算理,有助于学生对知识的迁移。同时培养了学生严谨治学、独立思考的学习习惯及比较的能力。

《最小公倍数》教学反思9

  本节课基本能实现预期的教学目标,让学生准确的理解“公倍数”与“最小公倍数”的概念和意义,也能够在学习方法上进行恰当的指导。在钻研教材、把握目标的基础上,充分利用材料组织教学,让学生深入浅出的进行学习课本的知识,教学过程也充分注意到了让学生独立思考、动手操作、自主探究知识,体现了“以生为主”的.教学理念。

  从作业的情况来看,学生对于用集合圈表示的方法学生错误很多,书写的要求要更规范一些。

《最小公倍数》教学反思10

  公倍数和最小公倍数是比较抽象的数学概念,学生要真正理解这些概念较为困难。但五年级学生的生活经验和知识背景已经很丰富了,而且他们思维活跃,喜欢自我挑战。对于新知识总喜欢自己探索,并且喜欢寻找与他人不同的看法。因此,我在教学时,放手让学生主动探究,在探究的基础上我作一些适当的指导。这节课也给我上了生动的一课,反思自己的'教学,我有下列体会。课堂教学是一个动态的不断发展推进的过程,这个过程既有规律可循,又有灵活的生成和不可预测性。只有通过课堂生成资源的适度开发和有效利用,才能促进预设教育目标的高效率完成或新的更高价值目标的生成。这节课,学生的新发现为我提供了一个宝贵的课堂再生资源,我充分利用了这份宝贵的资源,让学生自己探索问题并解决问题。回想起在我平时的教学中,也有这样的机会,当时没有敏锐的捕捉并加以利用,是多么的可惜啊。所以,教师应该重视课堂教学中突发的每件事,善加捕捉与利用。因为学生不是一个容器,而是一枝需要点燃的火把。我们只有珍惜和利用课堂生成资源,就能创建富有生命活力的课堂教学,在此过程中提升师生在课堂教学中的质量。

  本节课需要进一步思考的问题:学生之所以有更多不同的想法,是因为课堂上学生有了更多的与小组同学交流不同的机会。能有勇气在师生共同交流时挑战权威,提出不同的看法的学生还是少数,但在小组里交流情况就完全不同,学生在这里更会感觉到“心理安全”和“心理自由”,当然就会有更多的思维火花。因此,在课堂上如何把小组合作用到实处,用到好处,也给我提出了一个新的问题。

《最小公倍数》教学反思11

  一、创设情境激发兴趣

  “公倍数”、“最小公倍数”单从纯数学的角度去让学生领会,显然是比较枯燥、乏味的。《新课程标准》指出数学教学要紧密联系学生的生活环境,从学生的经验和已有的知识出发,激发学生的学习兴趣,向学生提供充分从事数学活动的机会,增强学生学好数学的信心。为了让这些枯燥的知识变成鲜活、灵动数学,使学生体会到最小公倍数在实际生活中的运用,课始,我把新知找4和6的公倍数融入到学生喜欢的“森林运动会”中,让学生在解决问题的过程中,自然而然地接受了新知,起到了“润物细无声”的作用。同时在这一环节的教学中,能充分相信学生,让学生通过独立思考、小组合作,既解决了问题,又习得了新知。在教法上做到有“扶”有“放”、“收放”自如,真正体现了“双主体”的作用。

  二、有效开放,自主探究。

  现代教育观点认为:学习不是为了占有知识,而是为了生长知识。教学中,我们不要教给学生现成的数学,而是要让学生自己观察、思考、探索研究数学。因此在研究最小公倍数的意义时,我让学生亲历知识的形成过程,设计看到这列数你想说些什么,看到这两列数你想说些什么?研究两数互质和成倍关系的最小公倍时设计你有什么发现?你会有怎样的猜想?一系列开放的数学问题,每个问题都为学生留出了足够的思维活动空间,让学生在高度的思维状态下,调动大量的原有知识参与新知识的构建。学生围绕这些问题,自主地在小组内开展了探究性的合作活动,根据自己已有的知识和经验,用自己的思维方式,自主地、开放地去探究,生成了各种方案资源。使学生的数学学习活动真正成为一个生动活泼、积极主动的、富有个性的过程。给我留下一个深刻的印象就是“教学的精彩在于学生的发现。”

  三、互动生成,启发思考。

  学生在前面的森林运动会“做裁判”中已经初步认识了“公倍数”和“最小公倍数”,我借机顺势推舟,请学生用列举法找公倍数和最小公倍数,为了在形式上避免了雷同,我是通过让学生填表获得最感性的认识,在此基础上更大胆地放手让学生自己去发现、验证、总结归纳结论,由于前面有了“做数学”方法的引领,学生在这里是能“胜任”的。这样就从概念的认识提高到了对方法的理解和掌握。在研究“互质”两个数的最小公倍数时,让学生经历“观察——发现——猜想——验证——归纳”五个过程,感受数学的严密性、科学性,感悟“做数学”的基本方法,从中渗透数学思考和数学方法。两数“互质”、两数“成倍”的最小公倍数是本课的重点,所以,在这一环节的最后以表格的形式进行了整理,起到巩固强化的作用。

  四、挖掘不足有待改进

  1、课初的情境创设不是很贴切。没有考虑到,比赛是有一定长度的`,与公倍数的个数是无限的不统一,因此在年级赛课中使用了摆方块的操作引入。

  2、学生的数学学习活动应当是一个生动活泼的、主动的富有个性的过程。而且激发学生的兴趣不止是一时之效,如何从学生的角度出发进行预案的设计,课堂中顺学而导保持学生的学习积极性是一个值得思考的问题。

《最小公倍数》教学反思12

  教学通过这小节内容时,教师根据教材创设的情境,引导学生通过观察、操作、分析、比较、抽象和概括,探索理解公倍数、最小公倍数的含义,掌握求两个数的最小公倍数的方法。本册教材改变了以往求最小公倍数以短除法为主的方法,而是放手让学生通过独立思考、自主探索解决问题的方法,强调了列举法与集合图的.方法。

  由于对教材中所安排的情境图与公倍数之间的密切关系理解不够透彻,所以无法做到创造性地使用教材,故在引导学生通过情境探索公倍数的初始出现了障碍,虽依靠教学经验及时予以调整,但自己深有感触,看来备好课的确是很有必要的,特别对课改后的课程而言更不可麻痹大意,否则就会出现本节课尴尬的局面。

  中午有一生打电话询问如何用集合图表示倍数关系中大数的倍数,该生提出了:“因为大数是小数的倍数,那么大数的倍数肯定也是小数的倍数,大数的倍数在集合图中该怎么填?”在以往的教学中虽也接触过集合图,但并没有去深究,所以我一时也愣住了,只好说:“你自己先思考,实在想不出来,下午再来找老师。”结果中午只好舍弃了睡觉。到校后,打开几个用集合图来表示两个数的倍数与公倍数的学生作业,这下更是愣了,他们所表示的方式与我所想的完全一致!

《最小公倍数》教学反思13

  一、精心研究,创新备课。

  1、说“公”。只要与“公”有关的词语都可以说。然后简要分析“公”字所代表的意思。然后让学生思考前面是否学过与“公”字有关的数学知识。学生很自然的想到了公因数和最大公因数。然后借机引入本课课题:公倍数与最小公倍数。

  2、让学生结合已有知识经验说说自己对“公倍数与最小公倍数”的理解。

  3、创设情境,先让学生独立发现“春”字剪纸中的数学信息,再进一步思考如何把这种规格剪纸作品布置成大小不同的正方形展板。并思考这些正方形展板的边长可以是多少分米?

  4、铺正方形纸板。每个小组发放一套长3厘米、宽2厘米的小长方形代替“春”字剪纸进行探究。看能否在6张边长不同的正方形纸板上正好铺满。

  5、现场汇总各小组探究情况。能按照长方形长或宽正好排满的用“Y”表示,不能正好排满的用“N”表示。让同学们在小组内交流自己的想法,找出为何有的额正好铺满,有的不能正好铺满的原因。

  6、认识公倍数。我们发现这样的小长方形能正好铺满边长是6厘米、12厘米、18厘米的正方形。如果用这样的长方形来铺,还能铺成边长是多少厘米的正方形呢?体会解决此类问题不必每次都摆卡片。

  7、用列举法找公倍数和最小公倍数。

  8、在解决问题中渗透短除法。体会上述方法都有一定的局限性。而短除法可以找出任意几个数的最小公倍数。

  9、让学生认识的找最小公倍数的应用。可以根据最小公倍数推算出其他公倍数。

  10、课下整理公倍数与公因数的区别与联系学习资料卡。在对比中清晰认知这两个知识点。培养学生掌握科学高效的学习方法。

  二、环环相扣,细腻授课。

  上课开始后,设计思路的前两步进展非常顺利。到了第三步时,学生开始出现困惑的表现,这正是我所追求的学生真实状态。不然一开始就让学生感觉很简单,对他们思维深度的开发力度就不够。

  在接下来的学生动手操作中,进展很不顺利。由于发放给他们的卡片只能满足横铺和竖铺一侧的数量。无法实现真正的密铺。我这一设计目的是让学生学会从铺一侧而推理出能否正好铺满。结果对一些同学来说比较抽象。他们把手中的长方形卡片铺在一起,到是得到了正方形,但只是铺在正方形纸板的'一个角上。无法确定是否可以正好密铺整个正方形纸板。

  于是,我告诉他们,如果你想不出其他办法,可以向老师申请备用卡片。结果没有一个小组申请。看来他们也是不想服输。然后我借机介绍了一个成功小组的做法,其他小组受到这一启发,可谓茅塞顿开。不一会就顺利完成了操作探究。唯一比较遗憾的是由于一开始操作不成功,再思考办法,然后根据受到的启发进行改正,耽误了很长一段时间,影响了后面一小部分教学内容。

  设计思路的第5步—第7步进展非常顺利。毕竟同学们的思路一旦打开,他们就会产生很多我们不可小觑的想法。而且精确而富有深度。

  三、课后反思,着眼未来。

  通过40分钟的上课过程,我为孩子们的成功探究感到开心,为他们充实的

  收获而喜悦,为没有完成所有的教学设计而遗憾。这也提醒我在今后的教学设计中除了考虑学生的知识储备外,还要考虑到他们在平时的学习中是否有动手探究的实践经验。然后将自己的新想法、新思路,进行科学有效的实施。在未来的成长过程中争当一名研究型教师。不管成功与否,要敢于迈出打造创新、务实、高效课堂的第一步。让自己和学生的思想永远处于最活跃的状态,这才是一个数学老师所应追求的……。

《最小公倍数》教学反思14

  一、联系实际理解数学。

  教学前,我了解了学生在这节课前已有的知识背景,直接出示例题,让学生自己去尝试解答,然后汇报个性化的解题方法。在不断的交流汇报中,学生发现了有特殊关系的两个数的最小公倍数的求法。教师又让学生举实例进行验证。公因数只有1的两个数的最小公倍数是它们的乘积。有倍数关系的两个数最小公倍数是它们中的较大数。再应用这一发现进行试一试的练习。让学生经历了观察、思考、比较、反思等活动中,逐步体会到了数学知识的产生、形成与发展的过程。

  二、教学中引导学生独立思考与合作交流。

  在教学有特殊关系的两个数的最小公倍数时,教师让学生自己说一说每组数最小公倍数有什么不同?学生在经历求的过程后,又仔细观察,认真思考,汇报自己的想法,把被动的`认知改成了主动探究。在教学求最大公因数和最小公倍数的异同时,教师出示了求3和4的最大公因数和最小公倍数的题目。让学生自己尝试后,小组讨论求两个数的最大公约数和最小公倍数的相同点和不同点。在同学之间的讨论、交流、探索中,学生发现了新知识的特点,又在不断的比较中,知道了新知识和旧知识之间的异同。就这样,在整理、归纳、交流的活动中丰富了数学活动的经验,提高了解决问题的能力,学生在这堂课中成为了学习的主人。

  三、重视学生获取知识的过程

  学生获取知识过程花的时间可能也要稍多一些,但是这一过程中,学生的学习积极性和主动性被充分地调动了起来,当他们面对那些生动有趣的实际问题时,会自觉地调动起已有的生活经验和那些“自己的”思维方式参与解决问题的过程中来,主动地借助已有的知识经验用学过的一些方法来展示自己内部的思维过程。在这一过程中,学生不仅能清楚地体会到数学的内部联系,而且能真切地体会到数学与外部生活世界的联系,体会到数学的特点和价值,体会到“数学化”的真正含义,从而帮助他们获得对数学的正确认识。

  在学会了基本概念之后,引导学生运用列举法找几个数的公倍数和最小公倍数,在练习了完成之后,教师引导学生观察其中的规律提出猜想和假设,然后通过每个小组的验证得到规律,在这个过程中,学生不仅发现了特殊关系的两个数的最小公倍数的简便求法,更重要的是,培养了学生的能力和严谨的学习态度和初步的学习数学的方法,培养同学之间的协作精神。

  四、存在不足。

  在本节课的教学中,存在以下不足

  1、过渡语的使用教师进行了精心设计,但对于课堂教学没多大的激励作用,应用朴实的语言。

  2、“说一说”的内容没必要让学生讨论,应让学生充分说,展示灵活的思路。

  3、“议一议”的内容时间不够充分,没有让学生真正深入地讨论。

  4、教师课堂应注意语言的精炼,如5和9的最小公倍数是45,师问:为什么?这样问不合适。应问:说一说你是怎样想的?

  本节课的遗憾就是。没有预料到学生会对“剪成同样长短的跳绳,不能有剩余跳绳”这个句子理解出现偏差,浪费了一些时间,但在课堂上看到了学生思维火花的闪现,感受到了他们思维的碰撞,教学目标也因此而有效达成。

《最小公倍数》教学反思15

  一、在操作中生疑

  教材之所以选择长方形纸片铺正方形的活动教学公倍数,我想是因为这一活动能吸引学生发现和提出问题,能引导学生积极地思考。当学生用同一种长方形纸片铺两个不同的正方形,面对出现的两种结果,会提出“为什么有时正好铺满、有时不能”,“什么时候正好铺满、什么时候不能”这些有研究价值的问题。他们沿着正方形的边铺长方形纸片,就会想到正好铺满与不能正好铺满的原因可能和边长有关,于是产生进一步研究正方形边长和长方形长、宽之间关系的愿望。

  二、在交流中感悟

  在分析正方形的边长和长方形长、宽之间的关系,按学生的认知规律,教师设计成两个层次:第一个层次联系铺的过程与结果,从两个正方形的边长除以长方形的长、宽没有余数和有余数的'层面上,体会正好铺满与不能正好铺满的原因。第二个层次根据正好铺满边长6厘米的正方形、不能正好铺满边长8厘米的正方形的经验,联想还能正好铺满边长是几厘米的正方形。通过小组合作讨论、交流知道这样的正方形有无数多个。

  三、在联想中建构

  因为学生在四年级(下册)教材里,已经建立了倍数和因数的概念,会找10以内自然数的倍数,因此当教师一旦给学生提供交流讨论分享的平台时,学生思维的火花不断擦亮,有的联想到“能正好铺满边长是6的倍数的正方形”有的联想到“能正好铺满的正方形,边长的厘米数既是2的倍数,又是3的倍数。”在头脑中将眼前的长方形和正方形,与“倍数”紧紧地联系起来,然后教师及时揭示公倍数的含义,把感性认识提升成理性认识,实现了数与形的完美结合。

【《最小公倍数》教学反思】相关文章:

识字的教学反思07-13

《石榴》教学反思07-15

大班教学反思07-17

《守株待兔》教学反思07-30

《称赞》教学反思07-31

影子教学反思08-01

阳光教学反思08-10

《家》教学反思08-13

《比尾巴》教学反思08-14