《数学广角──》教学设计
作为一位杰出的教职工,通常会被要求编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。写教学设计需要注意哪些格式呢?以下是小编收集整理的《数学广角──》教学设计,仅供参考,大家一起来看看吧。
《数学广角──》教学设计1
教材分析
“数学广角——重复问题”是人教版数学三年级下册新增设的一个内容。“重复问题”是日常生活中应用比较广泛的数学知识。教材主要是让学生通过实际生活中容易理解的题材,初步体会集合思想方法。集合是一种比较系统、抽象的数学思想方法。而教材例1编排的意图是借助学生熟悉的题材,通过统计表的方式列出参加语文小组和数学小组的学生名单,这与实际参加这两个课外小组的总人数不相符合,从而使学生学会利用集合图来解决这个问题。在此基础上,掌握解决此类问题的计算方法及含义。
学情分析
学情分析:学生从一年级学习数学开始,就已经在运用集合的思想方法了。如学习数数时,把1个人、2朵花等用一个封闭的曲线圈起来表示。又如学过的分类思想实际上就是集合理论的基础。但这些只是单独的一个个的集合圈,而本节课所用的集合圈含有重复的.部分,学生从没有见过。因此,教师一定要设计好探究情景,让学生经历从独立到交叉重复的过程,分散难度,使学生逐步理解图示中的不同位置所表示的不同意义,并能根据图示灵活解题。因此,本节课我没有直接利用教材中的例题进行教学,而是针对三年级学生的认知水平,在教学中,侧重亲自去感知、体验韦恩图的优势,对比中提升思维,进而明确本节课的目标是借助直观的韦恩图,利用集合的思想方法解决重复问题。
教学目标
1.知识与能力:使学生借助贴近生活的情境,利用集合的思想方法,引导学生学会用韦恩图解决单的实际问题,并能用数学语言进行描述。让学生掌握解决重复问题的一些基本策略,体验解决问题的多样性。通过丰富、直观的游戏活动,发展形象思维,提升抽象思维能力。
2.过程与方法:从学生熟悉的生活事例引入,既可以激发学生的学习兴趣,产生亲切感;也可以使学生认识到现实生活中蕴含丰富的数学问题,体验数学的应用价值,进一步感受数学与生活的联系。
3.情感态度和价值: 让学生在主动参加数学活动过程中,获得成功的体验,提高学生学习数学的兴趣与能力。
教学重点和难点
1.理解集合图的各部分意义。
2.掌握解决重复问题的一些基本策略。
《数学广角──》教学设计2
一、教学内容
抽屉原理。
二、教学目标
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过“抽屉原理”的灵活应用感受数学的魅力。
三、具体编排
1.例1及“做一做”。
例1借助把4枝铅笔放进3个文具盒中,不管怎么放,总有一个文具盒里至少放进2枝铅笔的情境,介绍了一类较简单的“抽屉问题”。为解释这一现象,教材呈现了两种思考方法:“枚举法“与“反证法”或“假设法”。
教学时,教师可适时引导学生对枚举法和假设法进行比较,并通过逐步类推,使学生逐步理解“抽屉问题”的“一般化模型”。
“做一做”中安排了一个“鸽巢问题”,学生可利用例题中的方法迁移类推。
2.例2及“做一做”。
本例介绍了另一种类型的“抽屉问题”,即“把多于个的物体任意分放进个空抽屉(是正整数),那么一定有一个抽屉中放进了至少(+1)个物体。”教材提供了把5本书放进2个抽屉,不管怎么放,总有一个抽屉里至少放3本书的情境。仍用枚举法及假设法探究该问题,并用有余数除法的形式5÷2=2……1表达出假设法的思路,并在此基础上,让学生类推解决“把7本书、9本书放进2个抽屉的问题”。
教学时,引导学生理解假设法最核心的思路是把书尽量多地“平均分”给各个抽屉。
“做一做”中“抽屉数”变成了3,要求学生在例2思考方法的基础上进行迁移类推。
3.例3。
例3是“抽屉原理”的具体应用,也是运用“抽屉原理”进行逆向思维的一个典型例子。
教学时,先引导学生思考这个问题与“抽屉原理”有怎样的联系,可先让学生自由猜测、再验证。逐步将“摸球问题”与“抽屉问题”联系起来,找出这里的“抽屉”是什么,“抽屉”有几个,再应用前面所学的“抽屉原理”进行反向推理。
四、教学建议
1. 应让学生初步经历“数学证明”的过程。
在小学阶段,虽然并不需要学生对涉及到“抽屉原理”的相关现象给出严格的、形式化的证明,但仍可引导学生用直观的方式进行“就事论事”式的`解释。教学时可以鼓励学生借助学具、实物操作或画草图的方式进行“说理”。通过这样的方式,有助于逐步提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。
2. 应有意识地培养学生的“模型”思想。
“抽屉问题”的变式很多,应用更具灵活性。但能否将这个具体问题和“抽屉问题”联系起来,能否找到问题中的具体情境和“抽屉问题”的“一般化模型”之间的内在关系是影响能否解决该问题的关键。教学时,要引导学生先判断某个问题是否属于用“抽屉原理”可以解决的范畴,如果可以,再思考如何寻找隐藏在其背后的“抽屉问题”的一般模型。
3. 要适当把握教学要求。
“抽屉原理”的应用广泛且灵活多变,因此,用“抽屉原理”来解决实际问题时,有时要找到实际问题与“抽屉问题”之间的联系并不容易。因此,教学时,不必过于追求学生“说理”的严密性,只要能结合具体问题把大致意思说出来就可以了,更要允许学生借助实物操作等直观方式进行猜测、验证。
五年级数学上册同步单元试卷:第七单元数学广角(4)
五年级数学上册同步单元试卷:第七单元数学广角(4)
五年级数学上册同步单元试卷:第七单元数学广角(1)
五年级数学上册同步单元试卷:第七单元数学广角(1)
五年级数学上册同步单元试卷:第七单元数学广角(2)
五年级数学上册同步单元试卷:第七单元数学广角(2)
五年级数学上册同步单元试卷:第七单元数学广角(3)
五年级数学上册同步单元试卷:第七单元数学广角(3)
苏教版六年级数学——第十单元 第五课时 应用广角
教学内容:第119页的应用广角,第27~31题,及自我评价
教学目标:1、使学生在整理与复习的过程中,进一步体会数学知识和方法的内在联系,能综合运用学过的数学知识和方法解释日常生活现象,解决简单实际问题。
2、使学生在整理与复习中,进一步评价和反思自己的学习情况,体验与同学交流和获取知识的乐趣,感受数学的意义和价值,增强学好数学的信心。
教学过程:
一、应用广角
1、问:你在生活中发现过哪些数学问题吗?
你能运用所学的数学知识和方法解决这些问题吗?
2、完成第27题
(1)课前预先布置学生按要求去调查
(2)课上,让学生分组汇报调查得到的数据
学生根据数据计算,完成填空
(3)分析:从这些信息中,你们知道了什么?
用百分数或比表示相关的信息有什么好处?
3、完成第28题
收集一些用百分数或比表示的信息,在小组里交流
4、完成第29题
根据本校一年级的班级数,让学生分成相应的小组,让每个小组调查一个班级的数据。
全班交流,统计分别知道三个应急电话号码的人数,再让学生按要求计算。
5、完成第30题
(1)每位学生带一张长8厘米,宽4厘米的长方形硬纸板
读题,思考:剪去的每个正方形的边长应该是几厘米?
(2)学生动手剪一剪、折一折
找一找:这个纸盒的长、宽、高各是多少?
(3)算一算:
制作这个纸盒用了多少硬纸板?
这个纸盒的容积是多少立方厘米?
6、完成第31题
学生先独立思考,再全班交流
二、自我评价
1、回顾自己本学期学习的表现,对照书上的几个要求,给自己评一评,看看分别能得几颗星。
2、在学习中,你觉得自己在哪些方面特别成功的?有没有什么好的方法和经验同大家交流一下。
3、在学习中,你觉得自己又有了哪些收获和进步?还有什么地方也有所欠缺,需要改进和努力的?
《数学广角──》教学设计3
一、教学内容:
数学广角“田忌赛马”。
二、教学目标:
1、通过田忌赛马的故事,让学生体会对策论的方法在实际中的运应用。
2.认识到解决同一个问题有不同的策略,能够找到解决问题的最优方案。
3、初步培养学生的应用意识和解决问题的能力,初步感知对策论的思想方法。
三、教学重难点:
重点:通过列举田忌所有可以采用的策略,来找出并体会田忌赢齐王的策略方法。
难点:学生能够把所学知识和实际生活联系起来,有效地运用到实际生活中去。
四、教学准备:
多媒体课件 、 表格
五、教学过程:
一、故事导入
同学们,今天,让我们一起走进数学广角,学习田忌赛马。(板书课题:数学广角-田忌赛马)
你们听过田忌赛马的.故事吗?老师非常喜欢这个充满智慧的故事。田忌赛马是一个非常有名的历史故事,其中蕴含着一个非常重要的对策,这节课,我们就要从数学的角度来分析这个故事,找到这个对策,而且我们还要学会应用这种对策来解决一些实际问题。
今天让我们一起来重温这个故事。
教师讲述田忌赛马的故事。
二、探索新知
田忌是怎样赢了齐王的?
田忌采用的策略
提问设疑。
(1)田忌到底有多少种可以采用的应对策略呢?田忌所用的这种策略是不是唯一能赢齐王的方法呢?
学生小组讨论交流,填写下面表格,集体汇报。
我们一起来看看田忌一共有多少种可采用的策略。
(2)你有什么发现?(田忌只有一种可以取胜齐王的方法。)
小结:像同学们刚才这样,把解决问题的所有可能性一一找出来,并从中找到最好的策略,这是数学中的一种很重要的方法。
三、学以致用
1、完成教材第106页“做一做”。
学生独立完成,然后集体汇报。
2、数学游戏:108页两人轮流报数,每次只能报1或2,把两人所报的数加起来,谁报数后和是10,谁就获胜。想一想:如果让你先报数,为了确保获胜,你第一次应该报几?接下来应该怎么报
四、课堂总结
通过今天的学习,你有什么收获?
《数学广角──》教学设计4
一、教材分析
说课的内容是:是人教版三年级下册第九单元“数学广角”的第一课时“简单的集合”。
《数学广角》内容的增设,它主要是介绍和渗透一些数学思想方法,涉及的重叠问题是日常生活中应用比较广泛的数学知识。是小学阶段集合思想教学。
二、学情分析
集合思想对于三年级学生来说并不陌生,在以往的题型中有过接触,只是无意识形成一些简单解决问题的方法。而本节课所要学的是含有重复部分的集合图,学生是第一次接触。教材中的例1通过统计表的方式列出参加比赛的学生名单,而总人数并不是这两项参赛的人数之和,从而引发学生的认知冲突。教材中是利用集合图(韦恩图)把这两项比赛人数的关系直观地表示出来,从而帮助学生找到解决问题的办法。教材要求只是让学生通过生活中容易理解的题材去初步体会集合思想,能够用自己的方法解决问题,为后继学习打下必要的基础。对于教师应根据学生特点,适度让学生亲历集合图的形成过程,不必拔高要求,引导学生理解集合图各部分的意义,培养学生应用集合思想解决实际问题的能力,初步感受集合思想的奇妙与作用。
二、教学目标的制定
(一)知识与技能
1.适度让学生亲历集合思想方法的形成过程,初步理解集合知识的意义。
2.让学生借助直观图理解集合图中每一部分的含义,通过语言的描述和计算的方法,能解决简单的重复问题。
(二)过程与方法
通过观察、操作、实验、交流、猜测等活动,让学生在合作学习中感知集合图形成过程,体会集合图的.优点,能直观看出重复部分,解决生活中的问题。
(三)情感态度与价值观
体验个体与小组合作探究相结合的学习过程,养成勤动脑,乐思考、巧运用的学习习惯,同时在这个过程中感受数学与生活的密切联系,体会数学的价值。
三、教学重难点
教学重点:了解集合图的产生过程,利用集合的思想方法解决有重复部分的问题。
教学难点:理解集合图的意义,会解决简单重复问题。
四、教学准备
多媒体课件、小白板、练习题卡
《数学广角──》教学设计5
教学目标:
1.经历将实际问题抽象出植树问题模型的过程,掌握种树棵数与间隔数之间的关系。
2.会应用植树问题的模型解决一些相关的实际问题,培养学生的应用意识和解决实际问题的能力。
3.感悟构建数学模型是解决实际问题的重要方法之一。
教学重点:
让学生发现植树的棵数和间隔数之间的关系,并用发现的规律解决实际问题。
教学准备:多媒体课件、答题卡。
课前准备:
首先让我们伴随着欢快的音乐来学做一节手操,好吗?
教学过程:
一、初步感知间隔的含义
1.导入:刚才,在做手操的过程中,我发现同学们的小手特灵活,哎,你们知道吗?在咱们的小手中,还藏着数学知识呢?想了解一下吗?
请你们伸出右手,张开,数一数,5个手指之间有几个空格?在数学上,我们把空格叫做间隔,也就是说,5个手指之间有几个间隔?4个间隔是在几个手指之间?
2.其实,这样的数学问题,在我们的生活中,随处可见。你们看,这是同学们利用课余正在彩排节目呢?数一数,一共有几个小朋友,每2个小朋友之间牵着一根彩带,用了几根彩带,把一根彩带看成一个间隔,那6个小朋友之间是几个间隔?
过渡语:在画面上我们看到春天桃红柳绿,到处是一派生机勃勃的景象,你们知道吗?3月12日是什么日子,这一天全国上下到处都在植树,为保护环境献出自己的一份力量,瞧......
3.再次感知,找到规律。这里从头到尾栽了几棵树,数一数,它们之间又有几个间隔呢?你发现了什么?谁来说一说?同时板书。
那么8棵树、9棵树之间又有多少个间隔呢?
你能像这样用一个图表示出来吗?请你们选择一种动手画一画吧!
谁来汇报一下?
边板书边说:画了8棵树,他们之间有7个间隔数,9棵树之间有8个间隔。
(停顿)那你们想象一下,如果从头到尾有10棵树,他们之间又会有几个间隔呢?
那20棵树呢?
看来,告诉你们植树的棵数,让你们说出间隔数已经难不倒大家了,接下来,如果一排树之间有22个间隔,你知道有多少棵树吗?
那30棵呢?(2人说)
像这样的例子,还可以举出很多、很多......
仔细观察,你发现植树棵树和间隔数之间有什么规律呢?(自己先想想,再把你的想法和伙伴们互相交流一下)。
反馈:谁来说说你的发现?评价:哦,这是你的发现......你还能用一个算式来概括。
边板书边说:同学们都发现了从头到尾栽一排树时,植树棵树比间隔数多1,(指表格),也可以写成两端要栽时,植树棵数-间隔数+1,间隔数=植树棵树-1。
小结:同学们不仅会观察,而且还能发现其中蕴含的规律,真不错,那就让我们一起进入今天的数学广角,运用这些规律来解决生活中的实际问题吧!
二、新授:
例1,同学们自由地小声地把题目读一读。
1.从题目你们知道了什么?(说一说)
2.题目中每隔5米栽一棵是什么意思?
3.题目中有什么地方要提醒大家的吗?(两端要栽)
4.一共需要多少棵树苗?你能自己想办法找到问题的答案吗?有困难的同学还可以借助线段图画一画。
5.交流。
6.反馈。
(1)请你们两人把你们的方法写到黑板上展示给大家看看,好吗?
(2)学生分别说想法。
(3)听了他们说的,你们想对他们说些什么?
刚才,这两位同学画线段图和找到了问题的答案,列算式的方法解决了这个问题。他们都是很善于动脑筋的。
三、联系实际、拓展应用
1.基本练习:
师:近几年南昌市容有了巨大的变化,随着一个个休闲广场的建立,一条条街道的逐步亮化,南昌市已成为一座具有内涵与魅力的花园城市。最近,我了解到有关胜利路步行街有这样一些信息。
那同学们能根据题中信息解决这个问题吗?第二步为什么要加1?
师:刚才这道题同学们解答得很顺利。
师:现在把这道题做了一些改变,看看你们是不是还能很顺利的解答?
师问:第一步求到的是什么?
师:虽然邓老师对这道题做了一些改变,但是还是没有难倒同学们,那刚才在做这两题的时候,同学们有没有发现,这两题解题思路有什么不同呢?(同学们可以先思考再讨论)。
咱们班的同学们不仅会解答,而且还能比较它们的不同,的确这两道题都运用了今天我们发现的这些规律,第一题是根据总长找到间隔数,再利用间隔数求出路灯的盏数,而第二题是根据路灯的盏数找到间隔数,再利用间隔数求出总长,它们的关键都是要先找到间隔数,正因为它们问题不同,所以解题思路也不同,以后大家在解决这类问题时可要注意审题哟!
2.变式练习:
师:20xx年最受关注的两个人物,你们知道是谁?他们就是航天英雄聂海胜和费俊龙,神六号的成功发射,让人们欢心鼓舞,作为一名中国人也为之自豪。你们知道吗,宇航员叔叔他们是每2小时(师读题)。
听了这3位同学的想法,你们会支持谁?说说理由!
3.综合练习。
师:中国的'体育界也有一位英雄,猜猜他是谁?此时此刻让我们一起重温一下那精彩的瞬间,再一次为他助威、呐喊!根据信息,学生讨论,借助计算器算出刘翔一共跑了多少米?
四、总结:通过这节课的学习,你们有什么收获?
今天我们学习的是与间隔有关的数学问题,在数学上我们统称为植树问题,(板书)那植树问题只在植树当中才有吗?学生说一说,植树只是其中的一个典型,像......等现象中都含有植树问题。
今天我们学习的植树问题仅仅是两端都栽时的情况。在以后的学习中,我们还会学到两端不栽,一端栽,封闭图形的植树问题。
围棋中的数学问题
教学内容:人教版教科书四年级下册数学广角第120页例3及部分练习。
教学目标:
1.借助围棋盘探讨封闭曲线(方阵)中的植树问题;
2.初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力;
3.让学生感受数学在日常生活中的广泛应用。
教学重点:从封闭曲线(方阵)中探讨植树问题。
教学难点:用数学的方法解决实际生活中的简单问题。
情感与态度目标:通过小组合作交流,培养学生认真倾听他人意见,乐于与人合作,从不同角度欣赏他人的良好心态。
教具准备:3×3格、4×4格、5×5格方格纸、围棋子若干粒、4×4格条形吹塑纸贴在地下。
课前准备:课桌围成“回”字形。
教学过程:
一、情境导入(课件出示)
猜谜:十九乘十九,黑白两对手,有眼看不见,无眼难活久。(打一棋类名称)
[设计意图:用谜语引入,从学生的已有经验出发,激发学生的学习兴趣。培养学生良好的兴趣爱好。]
二、探索新知
1.教学每边摆放3粒棋子的方法。
(1)课件出示围棋格子图,最外层每边能放3个棋子。最外层可以摆放多少个棋子?
(2)抢答:读题后,让学生口算出答案。(学生可能会出现多种答案。)
(3)动手验证:请学生分小组按要求摆放棋子,验证刚才答案。
(4)汇报交流(着重请学生说出方法。)
可能会出现以下方法:
3×2+2=82×4=8
3×3-1=83×4-4=8直接点数。
教师表扬学生的创新摆法,并奖励“智慧星”。(教师随学生回答,用课件出示摆放方法。)
2.教学每边摆放4粒棋子的方法。
(1)课件出示围棋格子图,最外层每边能放4个棋子。最外层可以摆放多少棋子?
(2)动手操作:请学生分小组按要求摆放棋子,写出算式。
(3)游戏:让一学生当“小老师”,其余学生当“围棋子”,请小老师邀请“围棋子”按上题要求站在老师设计的大棋盘上。
[设计意图:这一游戏的方法,激发了学生的兴趣,不仅使学生学到了摆放方法,让每个学生参与活动,把所学知识运动到游戏中。]
(4)汇报交流(着重请学生说出方法)
教师随学生回答,用课件出示摆放方法。
(5)你们最喜欢哪种方法?为什么?
3.教学每边摆放5粒棋子的方法。
(1)课件出示围棋格子图,最外层每边能放5个棋子。最外层可以摆放多少棋子?
(2)动手操作:请学生分小组按要求摆放棋子,写出算式。
(3)汇报交流。(教师随学生回答,用课件出示摆放方法。)
(4)你们最喜欢哪种方法?和同桌说一说。
[设计意图:让每位学生都参与活动,通过抢答、验证、分析、交流等一系列活动,借助围棋盘探讨封闭曲线(方阵)中的植树问题,进一步体会数学在日常生活中的广泛应用,学生在亲身“经历”的过程中实现知识能力乃至生命的同步发展。]
三、总结规律
(1)师:你觉得再用棋子摆,方便吗?你能根据前面我们摆放的方法,填写下列表格,总结出规律吗?(小组合作完成)
每边放的个数
最外层总数
3
4
5
6
...
18
你发现了什么规律:_____________________________________
(2)教学例3:出示围棋格子图。问:围棋盘的最外层每边都能放19个棋子,最外层一共可以摆放多少个棋子?
(2)总结规律::教师随着学生的回答板书:
间隔数×边数=最外层的总数
(3)学生根据规律,独立完成例3。
四、运用规律
1.如果最外层每边能放100个,最外层一共可以摆放多少个棋子?
如果最外层每边能放200个,最外层一共可以摆放多少个棋子?
如果最外层每边能放300个,最外层一共可以摆放多少个棋子?
拓展思维:如果一个五边形,怎么算?一个三角形呢?(集体口答)
2.做第121页第三题。
[设计意图:充分相信学生,放手让学生分析问题、解决问题,以学生为主归纳问题;教师在关键之处疏通点拨,引导学生加深理解,做到以学生为主体。]
3.请你参加:
12名学生在操场上做游戏,大家围成一个正方形,每边人数相等。四个顶点都有人,每边各有几名学生?(在教室内围一围。)
4.请你思考:(课件出示同学开联欢会时的欢乐情景。)
“六一”儿童节即将来临,四<1>班同学准备开联欢会。大家围坐在一起,如果每边做14人,(如下图),这个班一共有多少个同学?每边都有8张课桌,一共要多少张课桌?
5.请你设计:(课件出示美丽的校园情景。)
学校为了庆祝“六一”儿童节,改变校园环境,想全校范围内征集校园花坛设计方案。有以下三种,请每组同学选择一种你最喜欢的图形,算一算如果每边放三盆花,一共可以摆放多少盆花?再动手画一画,展示在黑板上,看哪一组做得又好又快!
[设计意图:整个练习从现实生活中出发提出数学问题,让学生在游戏中,在具体情境中充分动口、动手、动脑,培养了学生的自主学习能力、合作意识和科学探究精神。]
《数学广角──》教学设计6
教学内容:教材99页
教学目标:
1、通过观察、猜测、实验等活动,使学生找出最简单的事物的排列数和组合数,初步经历简单的排列和组合规律的探索过程。
2、学生初步学习排列组合的简单方法,锻炼学生观察、分析、和推理能力。
3、培养学生有序、全面思考问题的意识,通过小组合作探究的学习形式,养成与人合作的良好习惯。
教学重点:使学生找出最简单的事物的排列数和组合数
教学难点:培养学生有序地全面地思考问题
教学用具:多媒体课件,数字卡片。
教学过程
一、导入新课
同学们请问你们去过公园吗?公园好玩吗?老师今天要带你们去一个比公园更好玩的'地方,它就是数学广角。
二、动手操作、新授知识
1、首先进入数学广角大门,圣诞老人提示大门密码是由1和2这两个数字组成的,这道门的密码可能是那些数?
12 21 (两个数字交换位置)
2、数学广角大门打开了,又出现了第二关密码锁,圣诞老人提示这把锁的密码是由1、2、3三个数字中的其中两个组成,密码可能会是哪些数呢?
(1)两人一组,分工合作,一人摆数字卡,一人做记录。
(2)学生汇报。
(3)补充遗漏的。
想:要想使排列的数不重复又不遗漏,你有什么好办法?(学生回答)
总结方法:①先确定高位②先确定低位
三、深化知识,巩固练习
1、我们进来了,三个初次见面的小朋友相互用握手的方式问好。那么如果每两个人握一次手,三个人一共握几次手?(三个学生上台演示)
2、里面这么漂亮我们开始逛逛吧!咦!这些衣服真漂亮,请看有2件衣服,两条裤子,小华想买一套衣服,最多有几种购买方法?
3、数学广角我们逛完了,我们也该回学校了,那么我们该怎样回学校呢?有几种回校的路径?(多媒体课件展示题目)
4、小华想到校园商店买个数学本做家庭作业,可以怎样付钱?(多媒体课件展示题目)
四、小结
小朋友,通过这节课的学习我们发现数学广角中还有好多有趣的数学问题,等着我们去发现,去探索。同学们努力吧!下节课我们接着讲。
《数学广角──》教学设计7
一、教学目标:
1、理解集合圈里各部分的意义。
2、会读集合圈中的信息,会按条件填写集合圈。
3、使学生会借助直观图,利用集合的思想方法解决简单的实际问题。
二、教学重点:会读集合圈中的信息,会按条件填写集合圈。
三、教学难点:使学生会借助直观图,利用集合的思想方法解决简单的实际问题。
教学流程
一、脑筋急转弯导入:
1、两个爸爸和两个儿子去照相,可是照片上只有3个人。这是为什么呢?
2、学生各抒己见。
3、设置悬念:同学们的猜测都有各自的道理,但答案到底是什么呢?老师暂时还不想告诉你们,我相信通过下面的两个游戏,大家一定会自己找到答案的。
二、游戏体验,构建新知
1、开心转盘
请6名同学参加比赛。
介绍游戏规则:每人转动一次转盘,转盘停止后指针会停在相应的分数上,分数高者即获胜。参赛结束后把带有自己姓名的纸条贴在黑板上。游戏结束后奖励获胜的同学。
2、夹球
请5名同学参加比赛。
介绍比赛规则:学生面对面站立,一面三人,另一面两人,用小腿夹住球跑到对面交给另一名同学,依次这样做,球不落地即获胜。参赛结束后也把带有姓名的.纸条贴到黑板上。
3、游戏结束了,统计:参加这两项游戏的共有多少人?
4、下面请参加这两项游戏的同学到前面来,我们来检验一下是否有11人。
请参加开心转盘的同学站到这个圈里。请参加夹球的同学站到另一个圈里。
故作吃惊状:咦,参加夹球的还差2个人,在哪呢?赶快到前面来。
5、组织同学们想办法:他们俩站在哪比较合适呢?
6、结合学生的方法,指着开心转盘这个圈问学生:你能说说这个圈里表示什么吗?那另一边呢?中间表是什么?那你数一数到底有多少名同学参加了游戏?怎样列式?
7、揭示集合:在数学上,我们把参加“开心转盘”的同学看作一个整体,叫做一个集合;把参加“夹球”的同学看做一个整体,也是一个集合。
8、板书课题。
9、介绍维恩图。
10、介绍维恩。
三、分层练习,拓展提高
1、教材105页做一做的第1题
2、教材105页做一做的第2题
3、揭晓课前脑筋急转弯答案。
四、课堂小结,延伸铺垫
这节课你有哪些收获?
《数学广角──》教学设计8
教学目标:
1、使学生借助具体内容,初步体会集合的数学思想方法。
2、运用集合的思想方法解决一些简单的数学问题或实际问题。
3、使学生在学习活动中获得成功的体验,提高学生学习数学的兴趣。
教学重、难点:
1、初步体会集合的思想方法。
2、运用集合图来表示事物。
教具准备:展示题
教学过程:
一、激趣引入
师:同学们喜欢参加什么课外兴趣小组?
1、师根据学生回答逐步引导出学生对自己的兴趣既喜欢又喜欢或者只喜欢
师:刚才和同学们聊了你们喜欢的兴趣小组,今天我们在数学广角中继续研究这方面的问题。(板书:数学广角)
二、互动探究
1、出示例题
三(1)班参加语文、数学课外小组的学生名单
语文杨明李芳刘红陈东王爱华张伟丁旭赵军
数学杨明李芳刘红王志明于丽周晓陶伟卢强朱小东
师:同学们从例题当中得到了那些信息?
师:参加语文和数学兴趣小组的一共有多少人?
1、教师根据学生的回答相机板书人数。
17人、16人、15人、14人……
师:这么简单的一个问题为什么会出现好几个答案?
师:我们一起来演示了看看你能发现什么。
2、教师请学生把名字条放到相应的小组里。出现了多余的'三个,怎么办?用什么好办法能解决这个问题?请学生讨论思考并动手试一试。
语文小组数学小组
杨明、李芳、刘红
3、师生一起互动解决问题后,把得到的信息板书在黑板上。
4、介绍韦恩图。
5、教师手指韦恩图每个部分让生说出这个部分表示的意思并相机板书。
喜欢语文
喜欢数学
只喜欢语文
只喜欢数学
既喜欢语文又喜欢数学
6、根据这些板书信息尝试列式。
7、学生汇报列式教师相机板书。
8+9-3=14(人)
5+3+6=14(人)
……
8、同学们现在知道参加两个兴趣小组的共多少人了吗?
9、学生选择自己喜欢的计算方法相互说算理。
10、回看学生最初汇报的语文和数学兴趣小组的人数并评价。
11、对比韦恩图和统计表请学生评价。
三(1)班参加语文、数学课外小组的学生名单
语文杨明李芳刘红陈东王爱华张伟丁旭赵军
数学杨明李芳刘红王志明于丽周晓陶伟卢强朱小东
语文小组数学小组
教师小结:原来的统计表只能看出喜欢语文和喜欢数学的同学
而韦恩图不仅能看出喜欢语文和喜欢数学的同学还能看出只喜欢语文和只喜欢数学以及既喜欢语文又喜欢数学的同学。
师:我们打开108页,刚才咱们学习的就是108页的内容,请同学们再看一遍还有什么不懂的吗?
三、运用知识解决问题
1、完成书上110页练习二十四第一题和第二题。
四、总结
师:今天上了这节课你有什么收获?
五、课外延伸
师:听说过学以致用这个词语吗?就是说学了知识要把它运用到解决周围的问题当中,今天朱老师就给大家一个学以致用的机会。
作业:运用韦恩图的知识调查本班同学喜欢的两个体育运动项目交给老师以备运动会的时候用。
板书设计:
数学广角
《数学广角──》教学设计9
【教学对象】三年级学生
【授课教师】xx
【教材分析】重叠问题是人教版小学数学三年级下册数学广角的内容。教材的编排顺序是首先用统计表列出参加语文小组和数学小组的学生名单,从中可以看出:参加语文小组的有8人,参加数学小组的有9人。但实际参加这两个课外小组的总人数却不是17人,由此引起学生的认知冲突。然后教材利用直观图把这两个课外小组的关系表示出来。从图中清楚地看出,有3名学生同时属于这两个小组,所以计算总人数时只能计算一次。这里对学生渗透了集合的思想。第二环节探讨计算方法,根据参加语文、数学活动小组的人数,及两个活动小组都参加的人数这三个数据计算总人数。
【学情分析】:集合思想是数学中最基本的思想,集合理论可以说是数学的基础。从学生一开始学习数学,其实就已经在运用集合的思想了。例如,学生在学习数数时,就常常把1个人、2朵花、3枝铅笔等用一条封闭的曲线圈起来表示,在学习认识三角形等图形时,也常常把各种不同的三角形用一个圈圈起来表示。又如,学生学习过的分类思想和方法实际上就是集合理论的基础。但是,这些都只是单独的一个个集合图,而本节课所要用到的含有重叠部分的集合图,学生并没有接触过。基于此,我把知识的原点定位于两个独立的集合圈,没有采用教材例1统计表的呈现方式,从两个并列的集合圈引发学生的探究,更符合学生的学情。
【教学目标】
知识与技能
(1)使学生能借助集合直观图,初步体会集合的思想方法。
(2)利用集合的思想方法解决简单的实际问题。并能用数学语言进行描述。
过程与方法
(1)掌握解决重叠问题的一些基本策略。体验解决问题的多样性
情感态度价值观
(1)丰富学生对直观图的认识,发展形象思维。
(2)使学生在主动参与数学活动过程中获得成功的体验,提高学生学习数学的兴趣。
【教学重点】使学生掌握解决集合问题的一些基本策略,体验解决问题策略多样性。
【教学难点、关键】体会集合的思想方法,利用集合的思想方法解决简单的实际问题。
【教学方法】引导探究、讨论交流。【教学手段】多媒体课件、实物投影
【教学过程设计】
一、教学流程设计
复习铺垫,导入新课设计意图:通过复习两个都是求一共有多少人的解决实际问题,能更好的为学生引入本课的学习有一个铺垫和生活体验。
创设情景,探究新知设计意图:让学生通过情景感受,理解题意.激发兴趣.
发现方法,交流成果设计意图:通过小组合作学习,同学之间会有交流的欲望,正好为学生搭建交流的平台,促进学生的直观思维上升为逻辑思维。
练习巩固扩展提升设计意图:
相应的练习是为了让学生对新知的巩固,从而提升能力。
总结评价设计意图:
1.小结意在学生对新知的一个提升和强化。并是一个总结归纳的过程。利于学生形成一个解题的方法和能力。
二、教学过程设计
教学设计的反思
1、教学能有效的与学生的经验联系起来。
在设计本节课时,能从学生的认知经验出发,从复习两道紧密相连的习题入手让学生在思维上引起认知冲突。所以一开始学生就已知本课学习的内容。尊重了学生的认知基础,唤醒学生已有的知识经验,找准了学生已有的知识经验与新知的衔接点,为新知的学习巧搭“脚手架”,也使问题的引出顺理成章。本节课从问题的引入到问题的拓展都紧紧围绕例题所提供的素材来合理的进行问题的设计,至使问题的设计才层层递进,一环扣一环。在设计学生探究“集合图”的过程中。因为集合图的产生比较抽象。所以变为教师直接给出两幅“集合图”,并让学生结合自己的生活经验,说说两个集合图所表示的实际意义,同时又拓展了学生对集合图的认知,为建构抽象的数学模型搭建了平台,也体现了基于学生认知基础出发的教学理念。学生在解决问题的过程中既让学生感受到用集合图来解决问题的价值,又能让学生掌握使用集合图解决重叠问题的方法。
2、在问题的解决过程中,注重集合图与算式的有效结合。
本节课的设计意在充分发挥集合图的作用,但同时加强学生对文字信息的理解。既沟通了学生已有的知识经验间的联系,又让学生体会到、算式之间的联系,为建立数学模型搭建了很好的平台。
3、注重学生的及时练习反馈,为随时调控教师的教学方式方法提供依据。
课堂练习巩固是学生巩固知识方法、提高能力的必要环节,新课程改革以来,许多教师在情境创设、探究性学习和互动生成上下功夫,但在习题设计上却有所松懈。实践表明,小学生的学习很容易受环境的影响,当堂解答习题的质量要明显好于课后解答的质量。本节课正是从以学生发展为本、保证学生学有所得的观念出发,精心为学生设计有针对性的练习。基本练习能确保学生应用当堂所学到的知识和方法解决实际问题,体验和感受学习成功的滋味,增强学习数学的`信心。为了让学生感受解答方法的多样化和最优化。还设计了有针对性的练习。目的是为了要打破学生的思维定势,不让学生以为所有的习题都国用这种方法来解答。学生应该养成认真审题的习惯,根据问题的实质选择合适的方法来解决。其次,鼓励学生采用多种方法解决实际问题,发散学生的思维,培养学生的良好品质,提升学生的创新能力。实际教学证明,这样的习题很受学生欢迎,学生始终处于积极的思考、交流和感悟之中,从而实现了课堂教学的高效。
4、智力游戏的出现为本节课起到了烘托和提升的效果。
有趣的智力游戏培养了学生学习数学的兴趣。因为学以致用是学习的最终目的。在解决这样的问题中让学生体验到的学习的用处。让学生感悟到学习是能解决生活中的问题的。激发学生学习的内在动力。
不足之处:在实际的教学中教师还不够放手让学生去充分表达自己的想法。在方法的优化的指导上也没有让学生有充分的认知。
《数学广角──》教学设计10
教学内容:
义务教育课程标准实验教科书小学数学三年级上册《数学广角——集合》的内容之一。
教学目标:
1.知识技能目标:在具体的情境中使学生感受集合的思想,感知集合图的产生过程。
2.数学思考目标:
能借助直观图理解题意,同时使学生在解决问题的过程中进一步体会集合的思想,进而形成策略。
3.问题解决目标:
(1).能借助直观图,利用集合的思想方法解决简单的实际问题。
(2).渗透多种方法解决重叠问题的意识。
4.情感态度目标:
(1)培养学生善于观察、善于思考的能力。
(2)手脑结合、学中激趣,体验合作乐趣,养成良好习惯。
教学重难点:
1.重点:体会集合思想,利用集合的思想方法解决简单的重叠问题,并且能用数学语言进行描述。
2.难点:对重叠部分的理解;学会用集合图来表示事物之间的关系。
教学方法:观察法、分析法、讨论法、操作法、直观演示法、尝试法。
学法指导:
1.借图观察、分析、讨论、交流、操作。
2.大胆尝试用集合图来表示事物之间的关系,敢于发表自己的见解。
教具准备:多媒体课件、微视频、切换笔、可以活动的姓名卡片、直尺、磁铁、双面胶、5朵红花和5个五角星。一张大白纸。
学具准备:常规学具、彩笔、作业本。
教学过程:
一、创设情境,引入新课
1.激情导入,引出例题
师:上课之前,我们一起来欣赏一段视频,希望同学们认真仔细的观看,随后,要回答老师的提问。请看大屏幕……(课件出示奉献爱心、从小做起的微视频)
师:看完这段精彩而又让人感动的画面后,你有什么想说的吗?在今后的生活中,如果遇到需要帮助的人或事,你应该怎么做呢?(各抒己见)
师:同学们说的真好!那么,我们荔东小学的同学们也是一方有难、八方支援,非常有爱心。请看大屏幕:这是我校三一班其中一个小组同学向灾区“献爱心”的情况。请同学们认真仔细地观察这幅表格,你从中都发现了哪些数学信息?
设计意图:激发学生学习兴趣的同时,渗透奉献爱心、从小做起,一方有难、八方支援的爱心教育。
三一班某小组同学“献爱心”的情况:
生1:我发现在这次“献爱心”活动中,有捐款的,还有捐物的。
生2:我发现捐款的有5人,捐物的有6人。
师:你能提出一个数学问题吗?
生1:捐款的比捐物的少几人?
生2:捐物的比捐款的多几人?
生3:捐款的和捐物的一共多少人?
2.设问质疑,引发冲突
师:参加捐款捐物的一共有多少人?如何解答?
生:11人、10人、9人。
师:这么一个简单的问题怎么会有这么多不同的答案呢?
生:里面的同学重复了。
师:哪里重复了?(李彤和任一,课件闪动。)
看来这张表格不能让我们很清楚的看出一共有多少人?那你们能不能想想办法,在不改变题意的前提下,将表格中的名字作以调整,让人们很清楚的看出一共有多少人?为此,老师特意为大家准备了一个可以随意活动姓名的表格。请看黑板:(揭示黑板上的活动表格)
师:下面请同学们分组讨论,如何去调整表格?
二、小组交流,探究新知
1.分组讨论、调整表格。(各组代表汇报、操作、展示)方案一:
师:你觉得你们组这样摆有什么好处?
生:把重复的两个同学摆在前面,能引人注意。
师:谁都赞同他们的摆法?请把最热烈的掌声送给这个积极探索的小组。你们组的摆法的确不错,可老师还是觉得,有时还会将总人数看成11人,哪一组还有更好的摆法?
(课堂生成:如果学生没有想到这个方案,可以启发:当我们读书的时候,眼睛从左往右看。那么,想引起人们的注意,应该把既捐款又捐物的人名移到左边。)方案二:
师:哇!你们的摆法很独特,说说你们这样摆有什么好处?
生:因为有两个李彤和任一,我们取下来一个李彤和任一,将剩下的李彤和任一放在中间,既表示捐款的人,又表示捐物的人,这样,很清楚的看出一共有9人。
师:你们组的摆法真的`很有创意,他们组的摆法你满意吗?(生生评价)授予你们小组为“勇于创新小组”。同学们,掌声鼓励。
设计意图:培养学生的观察能力、分析能力、交流合作能力以及创新能力。积发学生的想象力,拓展学生的思维。
(课堂生成:如果学生没有想到这个方案,可以启发:当你和爸爸、妈妈上街的时候,你既想牵爸爸的手,又想牵妈妈的手,你应该走到什么位置?那么,同样的道理,李彤和任一这两个同学既捐了款又捐了物,他们应该放到什么位置?)
2.圈一圈。
师:请同学们观察这张调整后的表格,捐款的都有哪些人?捐物的都有哪些人?你能分别把它们圈出来吗?
设计意图:(不同颜色的粉笔圈出来更明显)为韦恩图的形成奠定基础。
3.探究韦恩图
师:为了让大家看的更清楚、更直观,请看大屏幕:
(1)取消表格。
表示捐款和捐物的人名单我们已经用线圈起来了,底下的表格已经没有用了,可以将它取消。
(2)捐款的移到左边,捐物的移到右边。
(3)线条歪歪曲曲的,将它画好就更美观了。(课件出现韦恩图)
设计意图:感受韦恩图的形成过程,让学生亲身经历知识的形成过程。
(4)介绍韦恩图。
师:在很久以前,就有人给它起了个名字,叫韦恩图。(出现韦恩图三个字)你们知道为什么把它称作韦恩图吗?因为这是英国著名的数学家韦恩在19世纪发明的,后来,就把这样的图叫韦恩图,也叫集合图。今天,我们就一起探究有关集合的知识《数学广角》——集合。(板书课题)
设计意图:介绍课外知识,拓宽知识视野。
师:同学们,我们通过自主探究、动手操作、小组讨论,将一幅不能很清楚的看到“捐款和捐物一共有多少人?”的表格,经过旋转演变后,转化成这副既科学合理又形象直观的韦恩图,你们真的很了不起!师:请大家仔细观察大屏幕,回答老师的提问。
4.列式计算。
(1)课件分别出示韦恩图的五个部分,学生分别说出每部分所表示的含义,课件一一呈现数学信息。
师:同学们看懂韦恩图了,也真正领悟到了每部分所表示的含义,并且,从中发现了这么多的数学信息,现在,你能计算出捐款和捐物的一共有多少人吗?请同学们独立解答。
(2)计算板演。
方法一:5+6-2=9(人)答:捐款和捐物的一共有9人。(贴答数)
讨论:为什么要减2?(因为有2个人既捐款又捐物)
方法二:3+2+4=9(口答) 方法三:5+4=9(口答) 方法四:3+6=9(口答)
设计意图:发展学生思维,体现方法多样化。
三、实践应用,巩固内化
师:同学们,通过刚才的学习,我们学会了许多知识和本领,其实,利用韦恩图可以帮我们解决生活中的许多问题,我们来看看:
1.举一反三(4道抢答题)
2.把下面的动物填在合适的位置。
3.看图填空。
4.思维训练
三年级有10名同学参加竞赛,其中,参加数学竞赛的有5人,参加作文竞赛的有6人。
(1)既参加数学竞赛又参加作文竞赛的有几人?
(2)只参加数学竞赛的有几人?
(3)只参加作文竞赛的有几人?
设计意图:有梯度的练习题有利于不同层次的学生均有收获。举一反三抢答题强调重点,内化知识;思维训练题求重叠部分,培养学生的逆向思维,培养学生灵活运用知识解决问题的能力。
四、总结质疑,自我提高
1.学生说这节课的收获并质疑
2.互相评价、共同提高(自评 互评 生评师 师评生)
师:同学们,你们课堂上,善于观察、认真思考、踊跃发言、敢于创新。表现得非常出色!通过自主探究、小组交流学到了很多关于集合的知识,下面,有请获得红花和红星奖励的小朋友上台。红花站左边、红星站右边。
引发冲突:两种都有的学生应该站哪?(中间)请观察这一排同学,回答问题:
1.获得红花奖励的指哪些同学?
2.获得红星奖励的指哪些同学?
3.既获得红花奖励又获得红星奖励的指哪些同学?
4.只获得红花奖励的指哪些同学?
5.只获得红星奖励的指哪些同学?
6.获得红花奖励和红星奖励的一共有多少人?
设计意图:内化集合知识;实现评价方法的多元化和评价方式的多样化;渗透养成良好学习习惯的思想教育。
五、作业布置,知识升华
我是小小设计师。(课后作业)
请以讲台前获得红花奖励和红星奖励的学生人数为题材,用今天所学到的知识,设计一个集合图。大胆尝试吧!只要我们能在知识的海洋里成风破浪、历练出一身好本领,一定会设计并创造出一个属于自己的精彩人生!
设计意图:给学生一个开放的空间,以讲台前获得红花奖励和红星奖励的学生人数为题材,用今天所学到的知识,让学生自主探索,自己设计出集合图。充分地利用韦恩图,让他们明白韦恩图在平时生活中也是非常有用,同时,培养了学生的创造能力。
六、板书设计,凸显重点(体现学生的主体地位)
数学广角——集合
(1)活动表格(移动过程让学生经历韦恩图的产生过程)
捐款
(2)计算板演(体现方法的多样性)
方法一:5+6-2=9(人)
方法二:3+2+4=9(人)
方法三:5+4=9(人)
方法四:3+6=9(人)
答:捐款和捐物的一共有9人。
《数学广角──》教学设计11
教学内容:
三年级数学上册第九单元《数学广角》教学目标:
1.知识目标:使学生借助直观图,利用集合的思想方法解决简单的重叠问题,并能用数学语言表述。
2.能力目标:使学生感知集合图的产生过程,初步培养学生的建模意识和能力,渗透多种方法解决问题的意识。
3.情感目标:培养学生初步养成善于观察、善于思考的学习习惯。教学重难点:
使学生借助直观图,利用集合的思想方法解决简单的重叠问题,并能用数学语言进行描述。教具学具准备:
课件教学流程:
一、创设情境生成问题
1、我想试试同学们反映快不快,请大家猜个脑筋急转弯。两个妈妈和两个女儿去看电影,每人买一张票,却只买了三张票就顺利进入了电影院,为什么?【姥姥、妈妈、女儿】
2、两个妈妈【板书:2】,两个女儿【板书:2】,却只买了3张票【板书:3】。这2+2怎么会等于3?这里谁的身份最特殊?为什么?【妈妈的身份最特殊,有两个身份,既是姥姥的女儿又是女儿的妈妈。】【妈妈有两个身份,重复算了一次,板书:2+2-1=3】
3、今天,我们要研究的就是与这有关的一类问题。【板书:数学广角】窍门满街跑,看你找不找。这节课看谁找的窍门最多?谁表现1得最好?
二、探索交流解决问题
为迎接我校20xx年校园科技艺术节的召开,学校将相继举行科技小制作和科技绘画比赛。要求每班5名同学参加科技小制作、6名同学参加科技绘画比赛。
这是三(1)班参加科技小制作和绘画比赛的学生名单。
你能从统计表中获得怎样的数学信息?你能提出怎样的数学问题?参加这两项比赛的共有多少人呢?谁来说一说?生:小制作的有5人,绘画的`有6人,一共有11人。师:大家还有不同意见的吗?
请大家拿出纸和笔,在纸上写一写、画一画,看怎样方便我们数人数?然后小组交流。
用实物投影汇报或典型做法的同学去黑板板演。(连线、画图法)师:你更喜欢哪种方法?为什么?
生:集合图能使别人一看就知道参加小制作比赛的有哪些同学,参加绘画比赛的有哪些同学,两项比赛都参加的有哪些同学。在数学上,我们把参加小制作比赛的学生看作一个整体,叫做一个集合。(板书:集合)把参加绘画比赛的学生看作一个整体,也是一个集合。在100多年前的英国,有一个名叫韦恩的逻辑学家,就用一个集合图很方便的解决了我们今天遇到的这个问题。(课件出示)因为是韦恩最早发明的,所以就以他的名字命名这种图,叫韦恩图。老师发现不少同学的想法和韦恩的一样,看来如果我们生的比他早,那就是用你的名字来命名了。我们一起来分析一下。
左边的圈表示的是什么?(参加小制作比赛的有5人。)右边的圈表示的是什么?(参加绘画比赛的有6人。)中间两个圈相交的部2分呢?【既参加小制作比赛,又参加绘画比赛的有2人。】去掉相交部分的左边的圈表示什么?(只参加小制作比赛的有3人。)去掉相交部分的右边的圈表示什么?(只参加绘画比赛的有4人。)
9、现在我们知道了可以用韦恩图,既能表示重复的部分,又能方便统计总数。三(1)班参加小制作的和参加绘画的到底一共有多少人?该怎样列式计算呢?(也可以只强化第一种方法)①算法1:5+6-2=9(人)
你是怎么想的?【先把参加制作比赛的和参加绘画比赛的加起来。算式是5+6=11,然后再用11减去2个重复的,11-2=9】②算法2:3+4+2=9(人)
请你解释一下。【3是只参加小制作比赛的,4是只参加绘画比赛的,2是两项比赛都参加的,即重复的】
③算法3:5+4=9(人)【参加小制作比赛的5人,加上只参加绘画比赛的4人】
④算法4:6+3=9(人)【参加绘画比赛的6人,加上只参加小制作比赛的3人】
刚才同学们想了很多算法,你觉得哪种比较容易理解。把你比较容易理解的那种算法,说给你的同桌听一下,是什么意思?
三、巩固应用内化提高
1、同学们累了吧,我们轻松一下,老师带领大家去动物世界看看吧,它们是谁呀?在这些动物当中有会飞的,会游泳的。找找哪些是会飞的,哪些是会游泳的,你能把它们的序号填到图中合适的位置上吗?
只会飞的有哪些?【②④⑧⑩】只会游泳的有哪些?【①⑤⑥⑨】
③天鹅、大雁放哪儿?【放中间】为什么放中间?【它既会飞又3会游泳】同意吗?
如果又来了一只小狗,应该把它放在哪呢? 【因为它既不会飞也不会游泳】
所以不能放在圈里,只能把它放在哪里?【圈外】同学们真了不起,没有被这样的问题迷惑住!
2、每班5名同学参加科技小制作、6名同学参加科技绘画比赛,其他班级可能会有多少人参加呢?
3、三年级有20个同学参加兴趣小组,其中参加数学小组的有15人,参加语文小组的有13人。
(1)既参加数学小组又参加语文小组的有几人?
(2)只参加数学小组的有几人?
(3)只参加语文小组的有几人?
四、回顾整理反思提升
通过这节课的学习,你有什么收获?
《数学广角──》教学设计12
教学目标:
1.在具体情境中,使学生感受集合的思想,感知集合图的产生过程。
2.能借助直观图,利用集合的思想方法解决简单的实际问题,同时使学生在解决问题的过程中,进一步体会集合的思想,进而形成策略。
3.渗透多种方法解决重叠问题的'意识,培养学生善于观察、勤于思考的学习习惯。
教学重难点:
1.重点: 让学生感知集合的思想,并能初步用集合的思想解决简单的实际问题。
2.难点:对重叠部分的理解。
教学准备:课件,名单卡片
教学流程:
(一)创设情景,激趣导入。
(二)探究新知
1. 情景引入,课件出示通知
通知
学校定于下周五举行趣味运动会,请三年级各班选拔
9名同学参加跳绳比赛,8名同学参加踢毽比赛。
校体育组
(1)了解信息。
(2)师:你觉得三(1)班选拔多少人参加这两项比赛?学生尝试回答参加比赛总人数。
2.出示名单,引发认知冲突
(1)课件出示三(1)班学生参加跳绳、踢毽比赛学生名单。
(2)学生观察,你有什么发现?总人数是17人吗?
(3)有没有什么办法能让大家很快看出哪些人两项比赛都参加了?
3.合作探究,体验过程
(1)学生小组内讨论交流,可以借助图、表或其他方式。
(2)汇报交流。
4.介绍韦恩图
(1)介绍韦恩图的来历。
(2)结合例题明确每一部分表示的含义。指生说一说。
5.想一想,可以怎样列式解答?
生尝试列式,全班交流。讲清算式的含义。
6.估计:咱们班可能选拔多少人参加这两项比赛?
(三)巩固练习
(四)全课小结 这节课你有什么收获?
板书设计:
《数学广角──》教学设计13
教学目标:
知识与技能
1、通过观察、猜测、操作等活动,找出最简单的事物的排列数。
2、使学生经历探索简单事物排列规律的过程。
3、培养学生有顺序地、全面地思考问题的意识,感受数学与生活的紧密联系。
过程与方法:经历观察、比较、自主合作探究等活动,讨论事物排列的规律。
情感态度与价值观:让学生感受数学与生活的紧密联系,培养学生学习数学的兴趣和用数学解决问题的意识。
教学重点:
自主探究,掌握有序排列、巧妙搭配的方法,并用所学知识解决实际生活中的问题。
教学难点:
怎样排列可以不重复、不遗漏。理解简单事物搭配中的有序、无序的不同。
教学过程:
一、引入
师:小朋友们喜欢看《喜羊羊与灰太狼》吗?自从灰太狼上次偷袭羊村失败后,羊村就加强了警戒,羊村里聪明的小羊们为了防止灰太狼进村,在羊村的大门上安装了3把密码锁,小羊们必须记住密码才能自由的出入,有一天粗心的喜羊羊出去玩却忘记了,这可怎么办呢?要是这时候灰太狼来了,多危险呢!聪明的同学们,你们愿意帮助他吗?
生:愿意!
二、新授
1、师:喜羊羊只记得第一把锁的密码是由1、2两个数字组成的两位数。
师:密码有可能是什么呢?
学生可能回答:12
师:还有其他可能吗?
学生可能回答:21
师:你是怎么想出来的呢,把你的好办法和大家说一说。
生:调换位置。(媒体演示用两张数字卡片排列成的12、21,教师并板书。)
师:这两个数有什么相同点和不同点?
相同点:每个数中都有数字1和2.
不同点:十位和个位上的数字正好交换了位置。
师:组成这两个数的数字是相同的,都是1和2,但排列位置不同,就组成了大小不同的两个数。
师:同学们真棒!门的密码是两个数中较小的一个。那应该是几?学生可能回答:12。
2、师:你们太棒了,我们再来帮助她解开解第二把锁,美羊羊记得第二把锁的密码是由1、2、3三个数字中的两个数字组成的两位数。你读懂了吗,给大家说一说?
生:意思就是说从1、2、3这三个数字里选择两个数字来排成两位数。
师:猜一猜这个密码会是什么呢?
学生在小组内动手摆一摆,并做好记录。(学生可能回答:12、13、23……)
师:有这么多答案啊,那么谁能想个好办法,把这么多数一个不漏的写下来,小组之间互相研究一下,看看哪组的办法好。把你组成的数在表格上写一写。
师:在思考时要注意“有顺序、不重复、不遗漏”。(板书)
学生活动,教师巡视指导。
师:你写出了几种?
学生可能回答:3种,4种,5种,6种……。
①师:我们要有顺序的.从这3个数字中选择2个数字,组成两位数,再把位置交换,又组成另外一个两位数。
12、21、23、32、13、31
②先确定十位,再将个位变动。
12、13、21、23、31、32
③先确定个位,再将十位变动。21、31、12、32、13、23
师结:这些办法真好,大家都能找到同样的两个数字,排列的位置不同,数的大小就不同。我们要学会有序地思考,能使答案做到:不会重复,不会遗漏。
师:这第二把锁的密码是把这六个数从小到大排列的第四个数。谁能最快的找到密码?
学生回答:23.
3、哇!第二把锁也顺利打开了,我们一起努力打开第三把锁,美羊羊记得是用0、2、3中的两个数组成的两位数?
师:能利用什么方法?排列了哪几个两位数?下面自己就试着写一写。
师:谁想汇报一下你用的什么方法写出了几个两位数?
师:谁有不同意见?
总结:两位数的十位上不能为0.
师:这第三把锁的密码是这些数中最大的一个数,应该是几呢?
生:32.
师:同学们可真厉害,这么快就打开了三把锁,这回美羊羊可以顺利进入羊村了。
4、小结:刚才同学们开动脑筋,用搭配的数学知识帮助美羊羊解开了密码锁。下面,我们一起来回顾一下搭配的方法:调换位置、固定十位、固定个位。这就是今天我们要学习的主要内容—搭配。板书课题
三、巩固练习
1.师:为了感谢大家,美羊羊邀请我们班同学去羊村小学参观,羊村小学可真漂亮啊,村长正在和小羊们做校园的规划,美羊羊向村长推荐我们班的小朋友一起来设计,大家愿意吗?我们一起来看一看吧!
师:用红黄蓝3种颜色给小羊们所在的两个区域涂上不同的颜色,刚才我们排列的是数字,我们可以把这个问题转化成数字排列的搭配问题,也就是把红黄蓝看成是1、2、3,利用前面所学的方法:调换位置、固定十位、固定个位,可先把数字填在表格里,然后根据数字所代表的颜色再涂色。下面我们就一起来设计一下吧!
师结:在同学们的精心设计下,羊村小学变得更漂亮了,老师也想去看看,那你们能帮老师搭配一套衣服吗?(出示课件)
2、三个人握手每两个人握一次,一共握了几次手。
3、从商场经学校到公园有几种走法。
4、买一个练习本可以怎样付钱。
四、课堂小结和课外延伸
同学们可真聪明,今天我们用搭配的数学知识解决了这么多生活中的问题,同学们的表现好极了,我为你们感到自豪,小羊们对你们也是刮目相看呀,那你能说一说今天你收获了哪些吗?
今天我们研究了搭配中的学问,我们要学会有顺序地、全面地思考问题,就能做到不重复、不遗漏。几个物体摆在一起,排列的位置不同,就有不同的效果。希望同学们能把今天所学的知识运用到生活中,它会给你的生活带来意想不到的收获。
5、板书设计
数学广角—搭配
1和2:
12、21
调换位置
1、2和3:
12、13、21、23、31、32
固定十位
0、2和3:20、23、30、32
固定个位
按顺序、不重复、不遗漏
《数学广角──》教学设计14
一、教学目标
(一)知识与技能
1.适度让学生亲历集合思想方法的形成过程,初步理解集合知识的意义。
2.让学生借助直观图理解集合图中每一部分的含义,通过语言的描述和计算的方法,能解决简单的重复问题。
(二)过程与方法
通过观察、操作、实验、交流、猜测等活动,让学生在合作学习中感知集合图形成过程,体会集合图的优点,能直观看出重复部分,解决生活中的问题。
(三)情感态度与价值观
体验个体与小组合作探究相结合的学习过程,养成勤动脑,乐思考、巧运用的学习习惯,同时在这个过程中感受数学与生活的密切联系,体会数学的价值。
二、教学诊断
“集合问题”是人教版三年级下册第九单元“数学广角”的第一课时,是小学阶段集合思想教学。集合思想对于三年级学生来说并不陌生,在以往的题型中有过接触,只是无意识形成一些简单解决问题的方法。而本节课所要学的是含有重复部分的集合图,学生是第一次接触。教材中的例1通过统计表的方式列出参加踢毽子比赛和跳绳比赛的学生名单,而总人数并不是这两项参赛的人数之和,从而引发学生的认知冲突。教材中是利用集合图(韦恩图)把这两项比赛人数的关系直观地表示出来,从而帮助学生找到解决问题的办法。教材要求只是让学生通过生活中容易理解的题材去初步体会集合思想,能够用自己的方法解决问题,为后继学习打下必要的基础。对于教师应根据学生特点,适度让学生亲历集合图的形成过程,不必拔高要求,引导学生理解集合图各部分的意义,培养学生应用集合思想解决实际问题的能力,初步感受集合思想的奇妙与作用。
三、教学重难点
教学重点:了解集合图的产生过程,利用集合的思想方法解决有重复部分的问题。
教学难点:理解集合图的意义,会解决简单重复问题。
四、教学准备
多媒体课件、小白板、练习题卡
五、教学过程
(一)巧用对比,初悟“重复”
1.观察与比较(课件出示图片)
第一组;父与子
(1)提出问题:有2个爸爸2个儿子,一共有几个人?怎样列式计算?
第一种:无重复情况。
黄明,他的爸爸黄伟光。李玉,他的爸爸李文华。
预设:列式一:2+2=4(人)
第二种:有重复情况。
汪聪,他的爸爸汪立成,汪立成的爸爸汪华东。
列式二:2+2=4(人)4-1=3(人)
师追问:为什么减1?
第二组:小棒拼三角形
(1)3根小棒拼成的一个三角形。
(2)提出问题:摆2个这样的三角形需要几根小棒?
预设:可能会说6根,表示3+3=6(根)
还可能会说5根,表示3+3-1=5(根)
图片出示有重复情况的2个三角形。
教师追问:根据图中摆的方法,哪种列式是正确的?为啥要减1?
2.思考与发现
(课件出示)把2组有重复情况的图片放在一起。
(1)提问:你发现了什么?
学生思考,回答想法。
教师要引导学生突出:
(1)“重叠”或“重复”一词;
(2)列式中“减1”的意义;
(3)能用表达逻辑关系的语言“既…又…”和“或”说出这两个关于重复现象的问题;
(4)师生小结,得出:图片1中有个人既是爸爸又是儿子,他的身份重复了;三角形中有1根小棒是公共边,重复使用了,既是左边三角形的一条边,又是右边三角形的一条边。
教师揭示课题,今天我们研究有重复现象的数学问题。
【设计意图】设计2组简单实例,既有生活中的问题又有数学中的重叠问题,不同角度的对比,共同的理解方法,都从简单数据入手,让学生在计算总数时都不能用直接相加的方法求出总数,引发学生认知冲突,唤醒探究热情,也让学生初识重复问题的基本含义。
(二)善用例题,引入新课
1.情境引入(课件出示“通知”)
(1)了解信息,提出问题
你认为三(1)班要选拔多少名同学参加这两项比赛?
让学生尝试回答参加比赛的总人数。
(2)出示名单,引发认知冲突
课件出示三(1)班参赛学生的名单的统计表,让学生观察。
2.观察名单,验证人数,初悟“重复”
问题:仔细观察过这份报名表,你有什么发现?
让学生根据自己的理解分析,发现有参加两个项目的同学,从而得出“重复”或相近的意思。
【设计意图】根据学生熟悉情境引入,通过具体情况引发矛盾冲突,提出问题,“在参加人数数据较多的情况下,发现重复的人数”,找准教学的起点,调动学生探索的积极性。
(三)合作探究,体验过程
1.策略分析
谈话:你能从这份报名表中一眼就看出有几位同学参加两项比赛?
让学生意识到如果能直观看出重复的同学就不会计算错误的问题,激发学生想重新整理名单的欲望。
借助学具,小组合作,同学间相互交流。教师巡视,个别辅导。
【设计意图】通过分析,让学生认识到要解决重叠问题,就要清楚看出重复部分的数量,从而引发学生操作意识,这时教师放手让学生进行探究,整理,在小组合作中完成。
2.探究方法
(1)选出几种不同作品展示,理解分析不同整理方法。
预设:方法一
方法二:
方法三:
(2)交流不同思想,比较各自的优缺点。
(3)引入韦恩图(集合图),了解集合图中的各标题含义,进行填写。
课件出示:
(4)介绍韦恩,拓宽视野
课件出示:在数学中,经常用平面上封闭曲线的内部代表集合,以及用以表示集合之间关系。这种图称为维恩图(也叫文氏图),是由英国数学家叫维恩发明创造的., 维恩图常用来研究表示数学中的“集合问题”,也叫集合图。
【设计意图】让学生亲历整理过程,在这个过程中通过合作、思考、交流、比较等活动,让学生充分认识到,体现重复部分怎样做到既直观又美观,还能表示每部分的内容。结合各小组展示的优点,引出韦恩图,让学生了解韦恩图的同时,又体会到数学文化的底蕴。
3.辩论感悟
谈话:现在用维恩图来表示各项参赛的人数,与之前的表格比较,它有哪些优点?
让学生感悟集合图能直观看出参加各项运动的人数,尤其是重复参加两项比赛人数的部分很清楚。
4.据图列式,运用集合图
谈话:你了解图中各部分的意义吗?
(1)课件演示各部分,让学生比较正确表述各部分的意义。
(2)利用数据,列式计算出该班参加比赛的人数。
指名学生计算,反馈交流,理解各算式的意义。
可能会出现:8+9-3=14(人);6+3+5=14(人);8-3+9=14(人)9+5=14(人)
【设计意图】让学生借助直观图,理解集合图的意义,并利用集合的思想方法解决简单的实际问题。在不同的策略中感受到解决问题方法的多样性,提高学生思维水平和学习能力。
5.变式练习,内化集合思想课件出示:三(2)参加运动会学生名单(学号表示),根据信息填写集合图中。
教师在引导中要让学生意识到先填写哪部分,再填写哪部分会更好些。
请学生板演,汇报填写的策略,看图理解各部分的意义,计算三(2)班参加比赛的总人数。
师生小结。【设计意图】变式练习是让学生从集合图中会看信息,到会填写集合图的一个数学思想的延伸,也是解决重复问题的关键,是为学生以后解决此类问题打好基础。
(四)巩固应用,建构模型
1.基础性练习
(1)完成教材上105页“做一做”第1题.
指导学生把动物的序号填进合适的图中,并请学生说说集合图中各部分的意义
2.趣味性练习
3.拓展性练习
估计三(3)班可能有多少同学参加比赛。
讨论:根据学校要求,每班要选拔9人参加跳绳,8人参加踢毽子比赛,你觉得三(3)班可能会选拔多少人?
判断:参赛的同学最多有17人。( )参赛的同学最少有 8人。( )
小组讨论,全班分析,得出:参赛同学最多是17人,没有人重复;最少有9人,其中8人重复。
【设计意图】设计一组由梯度的练习,从简单应用到开放,从正向思维到逆向思维,既链接所学知识资源,又实现对学生思维的拓展。这样的练习设计不仅能让学生结合集合思想进行分析,还能结合可能性的知识解决问题。
(五)全课总结,呼应课题
师:今天我们认识了用集合图来解决有重复现象的数学问题。这是一种数学思想,叫集合思想。(板书:集合)今天我们利用集合数学思想方法解决一些数学问题,希望同学们以后在学习上能多观察、勤思考,探寻更多的数学奥秘。
《数学广角──》教学设计15
《找次品》是人教版数学五年级下册第七单元数学广角的内容。现实生活生产中的次品有许多种不同的情况,有的是外观与合格品不同,有的是所用材料不符合标准等。这节课的学习中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。
新课程标准中指出:培养学生良好的数学思维能力是数学教学要达到的重要目标之一。因而新课标教材系统而有步骤地渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。通过教学使学生受到数学思想方法的熏陶,形成探索数学问题的兴趣与欲望,逐步发展数学思维能力。
找次品的教学,旨在通过找次品渗透优化思想,让学生充分感受到数学与日常生活的密切联系。优化是一种重要的数学思想方法,运用它可有效地分析和解决问题。本节课以找次品这一操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,在此基础上,通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养观察、分析、推理以及解决问题的能力。
学情分析
解决问题的策略研究学生已经不是第一次接触,此前学习过的沏茶、田忌赛马、打电话等都属于这一范畴,在这几节课的学习中,对简单的优化思想方法、通过画图的方式发现事物隐含的规律等都有所渗透,学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。另外,本节课中会涉及到的 可能、一定、可能性的大小、分数的通分等知识点学生在此之前都已学过的。
本节课学生的探究活动中要用到天平,在以往学习等式的性质等知识时,学生对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握。
新课程实施已有几年的时间,几年来,小组合作交流、自主探究的学习方式已为广大学生所接受,成为学生比较喜爱的主要学习方式,在小组学习中学生能够较好地分工、合作、交流,较好地完成探究任务。
教学目标
知识技能目标:让学生初步认识找次品这类问题的基本解决手段和方法。
过程方法目标:学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
情感态度价值观目标:感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
教学方法
1.加强学生的试验、操作活动。本节课内容的活动性和操作性比较强,可以采取学生动手实践、小组讨论、探究的方式教学。先多给学生一些时间,让他们充分地操作、试验、讨论、研究,找到解决问题的多种策略。活动完成后再让学生分组汇报结果。
2.重视培养学生的猜测、推理能力和探索精神。引导学生从纷繁复杂的方法中,从简化解题过程的角度,找出最优的解决策略。引导学生逐步脱离具体的实物操作,转而采用列表、画图等方式进行较为抽象的分析,实现从具体到抽象的过渡。
教学过程
课前谈话
出示3瓶钙片,说明:在这3瓶钙片中有一瓶少装了几颗,你能帮我找出是哪一瓶少装了吗?
学生自由发言。
在同学们说的这些方法中,你认为哪一种方法最好?为什么?
[设计意图:在这一环节中,要引导学生根据次品的特点发现用天平称的方法最好,知道并不需要称出每个物品的具体质量,而只要根据天平的平衡原理对托盘两边的物品进行比较就可以了。]
出示天平。说说怎样利用天平来找出这瓶钙片呢?
学生回答后小结:可以把其中的2瓶分别放在天平的两个托盘中,如果天平平衡则没放上去的那一瓶少装了;如果天平不平衡则翘起一端的托盘中所放的那一瓶少装了。
揭示课题:在生活中常常有这样的情况,在一些看似完全相同的物品中混着一个质量不同(轻一点或是重一点)的物品,需要想办法把它找出来,像这一类问题我们把它叫做找次品,这节课我们就一起来研究如何利用天平找次品。板书课题:找次品
[设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在教学例1前,先以3个待测物品为起点,降低了学生思考的难度,能较顺利地完成初步的逻辑推理:那就是并不需要把每个物品都放上去称,3个物品中把2个放到天平上,无论平衡还是不平衡,都能准确地判断出哪个是次品。只有理解了这些,后面的探究、推理活动才能顺利进行。]
设疑:如果老师有2187瓶钙片,其中一瓶少了一颗,用天平几次保证能找到次品?请你猜一猜。
找次品的解决方法
小组合作:从5瓶钙片中找出少装了的那瓶次品。
(合作要求:用手模拟天平,用5个学具当钙片。你们是怎样称的?称了几次?组长负责作好记录。)
指名汇报,根据学生的回答同步用图示法板书学生的操作步骤:
平衡:11次
5(2,2,1)
不平衡:2(1,1) 2次
5(1,1,1,1,1) 1次或2次
从这儿我们可以看出,用天平找次品的方法是多种多样的。
[设计意图:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。在这一环节中,让学生动手动脑,亲身经历分、称、想的全过程,从不同的方法中体验解决问题策略的多样性。但考虑到学生用天平来称在操作上会很麻烦,以前对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握,为了便于学生操作和节省时间,所以让学生用手模拟天平来进行实践探究。图示法较为抽象,对学生来说不容易理解,在这里只是让学生初步感知,教学时教师根据学生的回答同步板书,便于学生理解每项数据、每种符号的含义,为后面的`学习打下一定的基础。]
观察板书的图示法,思考:至少称几次就一定能找到这个次品呢?
[设计意图:学生在实际的操作中,可能会出现提前找到次品的情况,如果运气好的话称1次就可能找到次品。在这里必须引导学生在理解至少称几次就一定能找到这个次品 的含义,在此基础上让学生明白:当我们选用一种方法来分析的研究问题时,应注意把可能出现的结果考虑全面,才能得出正确的结论。同时也为下面的填表、探究优化策略作好准备。]
探索最优策略
在9个零件中有一个次品(次品重一些),用天平称,至少称几次就一定能找到这个次品呢?
小组分工合作:用学具摆一摆并尝试画图表示摆的过程,完成下表。
(合作要求:2名同学摆学具,2名同学用图示法作记录,2名同学分析填表。)
零件个数
分成的份数
每份的个数
至少称几次就一定能找到这个次品
[设计意图:这一环节是本节课的重点也是难点,必须进行小组活动,发挥集体的智慧才能突破这个难点。为了保证小组活动的有效性,活动前先在小组内进行分工,使每个成员都明确自己的任务。让学生摆学具而不再使用天平,并尝试用图示法记录操作过程,是完成由具体到抽象过渡中的重要一步。]
指名汇报,根据学生的回答填表并板书:
平衡 3(1,1,1)
9(3,3,3)
不平衡3(1,1,1) 2次
平衡1
9(4,4,1) 平衡2(1,1) 3次
不平衡4(1,1,2)
不平衡1
平衡1
平衡(2,2,1)
9(2,2,2,2,1) 不平衡2(1,1)3次
不平衡2(1,1)
9(1,1,1,1,1,1,1,1,1) 4次
引导观察:用哪一种方法保证能找出次品需要称的次数最少?
小结:平均分成3份去称,保证能找出次品所需的次数最少。
[设计意图:小组汇报时将学生的操作过程用图示法板书,使学生进一步理解并初步掌握这种分析方法。待测物品数量为9个时,只有平均分成3份称才能保证2次就找到次品,其它任何一种分法都比2次要多,这样便于学生发现规律。]
解决课始提出的问题,只需7次,让学生从强烈的对比中感受数学的魅力。
不能平均分成3份的应该怎样分呢?
全班合作:用图示法从10个和11个零件中找出一个次品。
(合作要求:将全班所有的小组分成2部分,一部分小组分析从10个零件中找出一个次品,另一部分小组分析从11个零件中找出一个次品。小组内先共同讨论出几种不同的分法,再2人合作选一种(组内不重复)用图示法分析。)
指名汇报,投影展示学生的分析过程。
引导观察,感知规律:一是把待测物品分成三份;二是要分得尽量平均,能够均分的就平均分成3份,不能平均分的,也应该使多的一份与少的一份只相差1。
[设计意图:设计待测物品数量为10个和11个,带领学生经历由特殊到一般的数学分析模式,在此基础上使学生比较全面地感知找次品这类问题的基本解决手段和方法。在这一环节中,让学生完全脱离具体的实物操作,实现从具体形象思维到抽象逻辑思维的过渡,但考虑到学生独立用图示法分析仍有难度,因而采用两个合作的方式进行。把学生分成2部分分别分析10个和11个,并要求小组内选方法时组内不重复,这样能提高探究的效率,在较短的时间内把几种情况都分析到。]
你知道这是为什么吗?你能不能对这个规律作出解释?
[设计意图:4-6年级学段目标中指出:在解决问题的过程中,能进行有条理的思考,能对结论的合理性作出有说服力的说明,能表达解决问题的过程,并尝试解释所得的结果。学生通过合作探索、归纳总结出了找次品的最优策略,解释这个规律能使学生对得出结论从感性认识上升为理性认识。要想用比较少的次数找到次品,那么每称一次都应该将次品锁定在一个尽可能小的范围内,因为天平有2个托盘,每称一次不但能对放上去的2份进行推理判断,还能对没放上去的1份进行推理判断,所以每称一次保证能锁定范围的最小值是待测物品的三分之一左右。]
拓展提高
猜测:这种方法在待测物品的数量更大时是否也成立呢?
第135页做一做:
有( )瓶水,除1瓶是盐水略重一些外,其他几瓶水质量相同。至少称几次能保证找出这瓶盐水?
请你选择一个合适的数来解这道题,独立用图示法分析,验证你的猜测是否正确。
[设计意图:本节课中提供的归纳方法在本质上是一种不完全归纳法,对数量更大时的情形是否适用,还需要通过试验来检验。先让学生进行猜测,引发学生进一步进行归纳、推理等数学思考活动,再将做一做进行适当的改编,设计成较为开放的问题,既能满足不同层次学生的需求,又可以用更多的数据对总结的规律进行验证。如果课堂时间不允许,这一环节也可以作为课堂的延伸让学生课后完成。]
《找次品》教学反思
著名的心理学家布鲁纳说过这样一句话:学习的最好刺激是对学习材料的兴趣。学生有了兴趣,学习活动对他们来说不是一种负担,而是一种享受、一种愉悦的体验。因此,上课开始,我首先拿出学生们喜欢的口香糖调动学生的兴趣,并与学生交流:老师这里有3瓶口香糖,要送给今天表现得最出色的同学,不过其中有一瓶已经被我吃过了两片,送给你们肯定不行,你能用什么办法把它找出来吗?随着学生的回答揭示本节课的教学内容找次品:在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个重量不同的,轻一点或是重一点,利用天平能够快速准确的把它找出来,我们把这类问题叫做找次品。
从3瓶口香糖中找次品的方法是本节课的基础。在这一环节中,我让学生用手做天平的托盘,感知从3瓶口香糖中找次品,只要称一次就足够了。接着
让学生用五个圆片代替5瓶口香糖,通过自己动手操作,体验从五件物品中找出一件次品的基本方法。随后,师生小结出方案。第一种方案:每份分一个,至少需要称两次就一定能找出来。第二种方案:有2份分2个,1份分1个,至少需要称两次就能找出来。
然后通过从9个零件中找出一个轻一些的次品,归纳出找次品的最优方法。《数学课程标准》强调:教师是学习的组织者、引导者和合作者。教师的引导能让学生对学习的程序、方式、方法、策略等有更进一步的了解。所以,本环节我把主动权交给学生,让学生小组合作,在试验、研讨的过程中自主探索解决问题的最优方法。接下来,在学生汇报、交流时引导学生归纳出找次品的最优策略,一是把待测物品平均分成3份,这样次数最少。
接着呼应课前的猜想,从9到27到81到243到729到2187,只需7次就能保证找到次品,学生从强烈的反差中感受到数学的魅力。
为了知识体系的完整,我让学生继续自主分析8瓶的找法,当数字不能被平均分成3份时,怎样分更合理,从均分2份需3次,而分成3、3、2时只需2次,从而更加清楚均分3份的好处,及尽量均分3份的策略。但因时间仓促,过程太简单,效果受到影响。
【《数学广角──》教学设计】相关文章:
数学广角植树问题教学设计04-23
人教版《数学广角——搭配》教学设计02-03
数学广角教学反思09-25
数学广角推理的教学反思10-17
《数学广角》教学计划04-25
《数学广角——》说课稿06-20
小学数学《广角》评课稿11-16
数学教学设计10-13
数学教学设计11-14
小学数学教学设计10-10