初中数学教学案例分析

时间:2024-10-18 12:24:15 初中数学 我要投稿
  • 相关推荐

关于初中数学教学案例分析

关于初中数学教学案例分析1

  一、教学设计:

关于初中数学教学案例分析

  1 学习方式:对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两个三角形间最简单,最常见的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂直、平行的重要依据。因此必须熟练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。

  2 学习任务分析:充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。

  3 学生的认知起点分析:学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。

  二、 教学目标:

  (1) 学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。 (2)

  掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解

  三角形的稳定性,能用三角形的全等解决一些实际问题。 (3)

  培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。

  教学的重点与难点

  重点:三角形全等条件的探索过程是本节课的重点。

  从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的`条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。

  难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。

  根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时 点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。。 6 教学过程

关于初中数学教学案例分析2

  案例:《二元一次方程组的应用》各环节配题。

  (一)提出问题,导入新课

  1、问题1 ? 解二元一次方程组

  问题2 母亲26岁结婚,第二年生个儿子,若干年后母亲的年龄是儿子年龄到3倍,此时母亲的年龄为几岁?

  解法一:设经过x年后,母亲的年龄是儿子年龄的3倍。

  由题意得 ? 26+x=3x

  解法二:设母亲的年龄为x岁。

  由题意得 ? x=3(x-26)

  (二)精选讲例,探求新知

  例 ? 某班有45位学生,共有班费2400元钱,准备给每位学生订一份报纸。已知《作文报》的订费为60元/年,《科学报》的订费为50元/年,则订阅两种报纸各多少人?

  巩固练习 小明和小李两人进行投篮比赛,规则:小明投3分球,小李投2分球,两人共投中20次,经计算两人得分相等,问小李和小明各投中几个球。

  (三)变式训练,激活学生思维

  问题1 小明和小李两人进行投篮比赛,小明投3分球,小李投2分球,两人共投中100次,小明投中率为40%,小明投中率为40%,经计算两人得分相等,问小李和小明各投中几个球。

  问题2 已知某电脑公司有A型、B型、C型3种型号的电脑,其价格分别为A型6000元/台、B型4000元/台、C型2500元/台,我校计划将100500元钱全部用于从该公司购进其中两种不同型号电脑共36台,请你设计出几种不同的购买方案供学校采用。小红的方案:她认为可以购进A型和B型电脑,请你判断小红提出的方案是否合理,并通过计算说明。

  (四)课堂练习,巩固新知

  1、A、B两地相距36千米,甲从A地出发步行到B地,乙从B地出发步行到A地,两人同时出发,4小时候相遇。若6小时后,甲所余路程为乙所余路程的2倍,求甲乙两人的速度。

  2、某班借来一批图书,分借给同学阅览,如果每人借6本,那么会有一个同学没书可借,如果每人借5本,那么还剩5本书没人借,问该班有多少人,有多少书。

  (五)拓展

  1、变题训练问题2中,若学校要购买A、B、C3种型号的电脑,有如何安排?

  2、某中学新建一栋4层的教学大楼,每层楼有8间教室,进、出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同。安全检查中,对4道门进行测试,当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生。

  ⑴问平均每分钟一道正门和一道侧门各可以通过多少名学生。

  ⑵检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的`学生应在5分钟内通过这4道门安全撤离。假设这栋大楼每间教师最多有45名学生,问建造的这4道门是否符合安全规定。

  分析:

  1、本课的配题注重从学生亲身经历的活动、学生熟悉的事入手选题,有开放型题、变式题,有数学思想的渗透,从易到难,由浅入深,应该说配题的设置具有一定的挑战性,能够起到激活学生思维的作用。

  2、本课的教学容量太大且选题具有一定的难度,对于基础好的学生也很难能够在有限的时间内从容地、完整地完成所有的学习任务;对于基础差的学生来说,由于太多的题不会做,课堂的时间等于空耗。

  3、由于时间紧,不能给学生留有充分的思考空间和时间,学生对于习题所传达的知识、方法很难理解透彻。所以常常出现习题做了很多,但是在遇见题还是有困难,习题的功能没有发挥。

  修改:

  1、可以结合学生的实际情况,分层次配题。对于基础差的学生习题的难度再降低一些,使他们会用二元一次方程组解决最基本的实际问题。对于基础好的学生,可以删除(二)(四)两组题,使他们能有更多的时间去探究问题、去迎接挑战。

  2、将学生分成不同的学习小组,能力强、弱搭配。在上述习题中选出部分更容易激起学生对数学的兴趣,更适合学生探究的习题,充分发挥习题的功能,使学生在主动学习、探究学习的过程中获得知识,培养能力。

  对于“实际问题与二元一次方程组”,不等同于一般例题内容的教学,而是应该以探究学习的方式完成。从教材设置的“数学活动”及“拓广探索”栏目下的习题等都设置了带有探究性的问题。对于这些内容的教学,应注意鼓励学生积极探究,当学生在探究过程中遇到困难时,教师应启发诱导,设计必要的铺垫,适时地追问,让学生在经过自己的努力来克服困难的过程中体验如何探究,而不要替代他们思考,不要过早给出答案。应鼓励探究多种不同的分析问题和解决问题的方法,使探究过程活跃起来,在这样的氛围中可以更好地激发学生积极思维,得到更大收获。所以教学中不能盲目地扩大习题量,而是要充分发挥习题的功能,给学生留有充分的思考时间与空间,引导学生更多的参与数学活动和相互交流,在主动学习、探究学习的过程中获得知识,培养能力,使每一位学生都能获得良好的数学教育,不同的人在数学上得到不同的发展。

关于初中数学教学案例分析3

  一、教学目标:

  1、知道一次函数与正比例函数的定义。

  2、理解掌握一次函数的图象的特征和相关的性质。

  3、弄清一次函数与正比例函数的区别与联系。

  4、掌握直线的平移法则简单应用。

  5、能应用本章的基础知识熟练地解决数学问题。

  二、教学重、难点:

  重点:初步构建比较系统的函数知识体系。

  难点:对直线的平移法则的理解,体会数形结合思想。

  三、教学过程:

  1、一次函数与正比例函数的定义:

  一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数。

  正比例函数:对于y=kx+b,当b=0、k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

  2、一次函数与正比例函数的区别与联系:

  (1)从解析式看:y=kx+b(k≠0、b是常数)是一次函数;而y=kx(k≠0、b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

  (2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0、0)的一条直线;而一次函数y=kx+b(k≠0)的.图象是过点(0、b)且与y=kx

  平行的一条直线。

  基础训练:

  1、写出一个图象经过点(1、—3)的函数解析式为:

  2、直线y=—2X—2不经过第象限,y随x的增大而。

  3、如果P(2、k)在直线y=2x+2上,那么点P到x轴的距离是:

  4、已知正比例函数y=(3k—1)x,若y随x的增大而增大,则k是:

  5、过点(0、2)且与直线y=3x平行的直线是:

  6、若正比例函数y=(1—2m)x的图像过点A(x1、y1)和点B(x2、y2)当x1y2、则m的取值范围是:

  7、若y—2与x—2成正比例,当x=—2时,y=4、则x=时,y=—4、

  8、直线y=—5x+b与直线y=x—3都交y轴上同一点,则b的值为。

  9、已知圆O的半径为1、过点A(2、0)的直线切圆O于点B,交y轴于点C。

  (1)求线段AB的长。

  (2)求直线AC的解析式。

关于初中数学教学案例分析4

  一、一元一次不等式组:

  关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。一元一次不等式组的概念可以从以下几个方面理解:

  (1)组成不等式组的不等式必须是一元一次不等式;

  (2)从数量上看,不等式的个数必须是两个或两个以上;

  (3)每个不等式在不等式组中的位置并不固定,它们是并列的

  二、一元一次不等式组的解集及解不等式组:

  在一元一次不等式组中,各个不等式的解集的公共部分就叫做这个一元一次不等式组的解集。求这个不等式组解集的过程就叫解不等式组。解一元一次不等式组的步骤:

  (1)先分别求出不等式组中各个不等式的解集;

  (2)利用数轴或口诀求出这些解集的'公共部分,也就是得到了不等式组的解集、

  三、不等式(组)的解集的数轴表示:

  一元一次不等式组知识点

  1、用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,有等号的画实心原点,无等号的画空心圆圈;

  2、不等式组的解集,可以在数轴上先画同各个不等式的解集,找出公共部分即为不等式的解集。公共部分也就各不等式解集在数轴上的重合部分;

  3、、我们根据一元一次不等式组,化简成最简不等式组后进行分类,通常就能把一元一次不等式组分成如上四类。

  说明:当不等式组中,含有“≤”或“≥”时,在解题时,我们可以不关注这个等号,这样就这类不等式组化归为上述四种基本不等式组中的某一种类型。但是,在解题的过程中,这个等号要与不等号相连,不能分开。

  四、求一些特解:求不等式(组)的正整数解,整数解等特解(这些特解往往是有限个),解这类问题的步骤:先求出这个不等式的解集,然后借助于数轴,找出所需特解。

  (1)考查不等式组的概念;

  (2)考查一元一次不等式组的解集,以及在数轴上的表示;

  (3)考查不等式组的特解问题;

  (4)确定字母的取值。

  (1)思维误区,不等式与等式混淆;

  (2)不能正确地确定出不等式组解集的公共部分;

  (3)在数轴上表示不等式组解集时,混淆界点的表示方法;

  (4)考虑不周,漏掉隐含条件;

  (5)当有多个限制条件时,对不等式关系的发掘不全面,导致未知数范围扩大;

  (6)对含字母的不等式,没有对字母取值进行分类讨论。

【初中数学教学案例分析】相关文章:

小学数学教学设计案例分析10-02

初中数学教学设计案例优秀09-21

(精选)初中数学案例反思07-12

小学语文教学案例分析04-14

高中数学教学案例 高中数学教学设计案例通用09-07

小学数学教学案例及反思10-25

初中数学试卷分析04-26

中学数学教学设计的模板及案例02-28

高中数学教学案例07-11

初中语文教学案例08-08