高中数学教学设计

时间:2024-08-27 09:46:13 高中数学 我要投稿

(推荐)高中数学教学设计15篇

  作为一位不辞辛劳的人民教师,总归要编写教学设计,教学设计是一个系统化规划教学系统的过程。写教学设计需要注意哪些格式呢?下面是小编帮大家整理的高中数学教学设计,仅供参考,欢迎大家阅读。

(推荐)高中数学教学设计15篇

高中数学教学设计1

  一.教材分析。

  ( 1)教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学

  ( 5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思

  想方法,都是学生今后学习和工作中必备的数学素养。

  (2)从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫

  二.学情分析。

  ( 1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。

  ( 2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强,逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。

  (3)从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。

  三.教学目标。

  根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为:(1)知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。

  (2)过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.

  (3)情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的'奇异美、结构的对称美、形式的简洁美。

  四.重点,难点分析。

  教学重点:公式的推导、公式的特点和公式的运用。

  教学难点:公式的推导方法及公式应用中q与1的关系。

  五.教法与学法分析.

  培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而

  获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话:还课堂以生命力,还学生以活力。

  六.课堂设计

  (一)创设情境,提出问题。(时间设定:3分钟)

  [利用投影展示]在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?

  [设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点]

  提出问题1:同学们,你们知道西萨要的是多少粒小麦吗?

高中数学教学设计2

  教学目标:

  ①掌握对数函数的性质。

  ②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值域及单调性。

  ③注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。

  教学重点与难点:

  对数函数的性质的应用。

  教学过程设计:

  ⒈复习提问:对数函数的概念及性质。

  ⒉开始正课

  1比较数的大小

  例1比较下列各组数的大小。

  ⑴loga5.1 ,loga5.9 (a>0,a≠1)

  ⑵log0.50.6 ,logЛ0.5 ,lnЛ

  师:请同学们观察一下⑴中这两个对数有何特征?

  生:这两个对数底相等。

  师:那么对于两个底相等的对数如何比大小?

  生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。

  师:对,请叙述一下这道题的`解题过程。

  生:对数函数的单调性取决于底的大小:当0调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递增,所以loga5.1

  板书:

  解:Ⅰ)当0

  ∵5.1<5.9 loga5.1="">loga5.9

  Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数

  ∵5.1<5.9 ∴loga5.1

  师:请同学们观察一下⑵中这三个对数有何特征?

  生:这三个对数底、真数都不相等。

  师:那么对于这三个对数如何比大小?

  生:找“中间量”,log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,

  log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

  板书:略。

  师:比较对数值的大小常用方法:

  ①构造对数函数,直接利用对数函数的单调性比大小;

  ②借用“中间量”间接比大小;

  ③利用对数函数图象的位置关系来比大小。

  2函数的定义域,值域及单调性。

高中数学教学设计3

  一、课题:

  人教版全日制普通高级中学教科书数学第一册(上)《2.7对数》

  二、指导思想与理论依据:

  《数学课程标准》指出:高中数学课程应讲清一些基本内容的实际背景和应用价值,开展“数学建模”的学习活动,把数学的应用自然地融合在平常的教学中。任何一个数学概念的引入,总有它的现实或数学理论发展的需要。都应强调它的现实背景、数学理论发展背景或数学发展历史上的背景,这样才能使教学内容显得自然和亲切,让学生感到知识的发展水到渠成而不是强加于人,从而有利于学生认识数学内容的实际背景和应用的价值。在教学设计时,既要关注学生在数学情感态度和科学价值观方面的发展,也要帮助学生理解和掌握数学基础知识和基本技能,发展能力。在课程实施中,应结合教学内容介绍一些对数学发展起重大作用的历史事件和人物,用以反映数学在人类社会进步、人类文化建设中的作用,同时反映社会发展对数学发展的促进作用。

  三、教材分析:

  本节内容主要学习对数的概念及其对数式与指数式的'互化。它属于函数领域的知识。而对数的概念是对数函数部分教学中的核心概念之一,而函数的思想方法贯穿在高中数学教学的始终。通过对数的学习,可以解决数学中知道底数和幂值求指数的问题,以及对数函数的相关问题。

  四、学情分析:

  在ab=N(a>0,a≠1)中,知道底数和指数可以求幂值,那么知道底数和幂值如何求求指数,从学生认知的角度自然就产生了这样的需要。因此,在前面学习指数的基础上学习对数的概念是水到渠成的事。

  五、教学目标:

  (一)教学知识点:

  1.对数的概念。

  2.对数式与指数式的互化。

  (二)能力目标:

  1.理解对数的概念。

  2.能够进行对数式与指数式的互化。

  (三)德育渗透目标:

  1.认识事物之间的相互联系与相互转化,

  2.用联系的观点看问题。

  六、教学重点与难点:

  重点是对数定义,难点是对数概念的理解。

  七、教学方法:

  讲练结合法八、教学流程:

  问题情景(复习引入)——实例分析、形成概念(导入新课)——深刻认识概念(对数式与指数式的互化)——变式分析、深化认识(对数的性质、对数恒等式,介绍自然对数及常用对数)——练习小结、形成反思(例题,小结)

  八、教学反思:

  对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,教材内容的处理收到了一定的预期效果,尤其是练习的处理,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。然而还有一些缺憾:对本节内容,难度不高,本人认为,教师的干预(讲解)还是太多。在以后的教学中,对于一些较简单的内容,应放手让学生多一些探究与合作。随着教育改革的深化,教学理念、教学模式、教学内容等教学因素,都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,关注学生个性和潜能的发展,使教学过程更加切合《课程标准》的要求。

  对于本教学设计,时间仓促,不足之处在所难免,期待与各位同仁交流。

高中数学教学设计4

  一、教学内容分析:

  本节教材选自人教a版数学必修②第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。

  二、学生学习情况分析:

  任教的学生在年段属中上程度,学生学习兴趣较高,但学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。

  三、设计思想

  本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。

  四、教学目标

  通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。

  五、教学重点与难点

  重点是判定定理的引入与理解,难点是判定定理的应用及立几空间感、空间观念的形成与逻辑思维能力的培养。

  六、教学过程设计

  (一)知识准备、新课引入

  提问1:根据公共点的情况,空间中直线a和平面?有哪几种位置关系?并完成下表:(多媒体幻灯片演示) a??

  提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。

  [设计意图:通过提问,学生复习并归纳空间直线与平面位置关系引入本节课题,并为探寻直线与平面平行判定定理作好准备。]

  (二)判定定理的探求过程

  1、直观感知

  提问:根据同学们日常生活的观察,你们能感知到并举出直线与平面平行的具体事例吗?

  生1:例举日光灯与天花板,树立的电线杆与墙面。

  生2:门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行(由学生到教室门前作演示),然后教师用多媒体动画演示。

  [学情预设:此处的预设与生成应当是很自然的,但老师要预见到可能出现的情况如电线杆与墙面可能共面的情形及门要离开门框的位置等情形。]

  2、动手实践

  教师取出预先准备好的直角梯形泡沫板演示:当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置给人以平行的感觉,而当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象就不平行。又如老师直立讲台,则大家会感觉到老师(视为线)与四周墙面平行,如老师向前或后倾斜则感觉老师(视为线)与左、右墙面平行,如老师向左、右倾斜,则感觉老师(视为线)与前、后墙面平行(老师也可用事先准备的`木条放在讲台桌上作上述情形的演示)。

  [设计意图:设置这样动手实践的情境,是为了让学生更清楚地看到线面平行与否的关键因素是什么,使学生学在情境中,思在情理中,感悟在内心中,学自己身边的数学,领悟空间观念与空间图形性质。]

  3、探究思考

  (1)上述演示的直线与平面位置关系为何有如此的不同?关键是什么因素起了作用呢?通过观察感知发现直线与平面平行,关键是三个要素:①平面外一条线②我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为平面内一条直线③这两条直线平行

  (2)如果平面外的直线a与平面?内的一条直线b平行,那么直线a与平面?平行吗?

  4、归纳确认:(多媒体幻灯片演示)

  直线和平面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线和这个平面平行。

  简单概括:(内外)线线平行?线面平行a符号表示:ba||? a||b??

  温馨提示:

  作用:判定或证明线面平行。

  关键:在平面内找(或作)出一条直线与面外的直线平行。

  思想:空间问题转化为平面问题

  (三)定理运用,问题探究(多媒体幻灯片演示)

  1、想一想:

  (1)判断下列命题的真假?说明理由:

  ①如果一条直线不在平面内,则这条直线就与平面平行()

  ②过直线外一点可以作无数个平面与这条直线平行( )

  ③一直线上有二个点到平面的距离相等,则这条直线与平面平行( )

  (2)若直线a与平面?内无数条直线平行,则a与?的位置关系是( ) a、a ||? b、a?? c、a ||?或a?? d、a?? [学情预设:设计这组问题目的是强调定理中三个条件的重要性,同时预设(1)中的③学生可能认为正确的,这样就无法达到老师的预设与生成的目的,这时教师要引导学生思考,让学生想象的空间更广阔些。此外教师可用预先准备好的羊毛针与泡沫板进行演示,让羊毛针穿过泡沫板以举不平行的反例,如果有的学生空间想象力强,能按老师的要求生成正确的结果则就由个别学生进行演示。]

  2、作一作:

  设a、b是二异面直线,则过a、b外一点p且与a、b都平行的平面存在吗?若存在请画出平面,不存在说明理由?

  先由学生讨论交流,教师提问,然后教师总结,并用准备好的羊毛针、铁线、泡沫板等演示平面的形成过程,最后借多媒体展示作图的动画过程。

  [设计意图:这是一道动手操作的问题,不仅是为了拓展加深对定理的认识,更重要的是培养学生空间感与思维的严谨性。]

  3、证一证:

  例1(见课本60页例1):已知空间四边形abcd中,e、f分别是ab、ad的中点,求证:ef ||平面bcd。

  变式一:空间四边形abcd中,e、f、g、h分别是边ab、bc、cd、da中点,连结ef、fg、gh、he、ac、bd请分别找出图中满足线面平行位置关系的所有情况。(共6组线面平行)变式二:在变式一的图中如作pq?ef,使p点在线段ae上、q点在线段fc上,连结ph、qg,并继续探究图中所具有的线面平行位置关系?(在变式一的基础上增加了4组线面平行),并判断四边形efgh、pqgh分别是怎样的四边形,说明理由。

  [设计意图:设计二个变式训练,目的是通过问题探究、讨论,思辨,及时巩固定理,运用定理,培养学生的识图能力与逻辑推理能力。]例2:如图,在正方体abcd—a1b1c1d1中,e、f分别是棱bc与c1d1中点,求证:ef ||平面bdd1b1分析:根据判定定理必须在平

  面bdd1b1内找(作)一条线与ef平行,联想到中点问题找中点解决的方法,可以取bd或b1d1中点而证之。

  思路一:取bd中点g连d1g、eg,可证d1gef为平行四边形。

  思路二:取d1b1中点h连hb、hf,可证hfeb为平行四边形。

  [知识链接:根据空间问题平面化的思想,因此把找空间平行直线问题转化为找平行四边形或三角形中位线问题,这样就自然想到了找中点。平行问题找中点解决是个好途径好方法。这种思想方法是解决立几论证平行问题,培养逻辑思维能力的重要思想方法]

  4、练一练:

  练习1:见课本6页练习1、2

  练习2:将两个全等的正方形abcd和abef拼在一起,设m、n分别为ac、bf中点,求证:mn ||平面bce。

  变式:若将练习2中m、n改为ac、bf分点且am = fn,试问结论仍成立吗?试证之。

  [设计意图:设计这组练习,目的是为了巩固与深化定理的运用,特别是通过练习2及其变式的训练,让学生能在复杂的图形中去识图,去寻找分析问题、解决问题的途径与方法,以达到逐步培养空间感与逻辑思维能力。]

  (四)总结

  先由学生口头总结,然后教师归纳总结(由多媒体幻灯片展示):

  1、线面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线与这个平面平行。

  2、定理的符号表示:ba||? a||b??简述:(内外)线线平行则线面平行

  3、定理运用的关键是找(作)面内的线与面外的线平行,途径有:取中点利用平行四边形或三角形中位线性质等。

  七、教学反思

  本节“直线与平面平行的判定”是学生学习空间位置关系的判定与性质的第一节课,也是学生开始学习立几演泽推理论述的思维方式方法,因此本节课学习对发展学生的空间观念和逻辑思维能力是非常重要的。

  本节课的设计遵循“直观感知——操作确认——思辩论证”的认识过程,注重引导学生通过观察、操作交流、讨论、有条理的思考和推理等活动,从多角度认识直线和平面平行的判定方法,让学生通过自主探索、合作交流,进一步认识和掌握空间图形的性质,积累数学活动的经验,发展合情推理、发展空间观念与推理能力。

  本节课的设计注重训练学生准确表达数学符号语言、文字语言及图形语言,加强各种语言的互译。比如上课开始时的复习引入,让学生用三种语言的表达,动手实践、定理探求过程以及定理描述也注重三种语言的表达,对例题的讲解与分析也注意指导学生三种语言的表达。

  本节课对定理的探求与认识过程的设计始终贯彻直观在先,感知在先,学自己身边的数学,感知生活中包涵的数学现象与数学原理,体验数学即生活的道理,比如让学生举生活中能感知线面平行的例子,学生会举出日光灯与天花板,电线杆与墙面,转动的门等等,同时老师的举例也很贴进生活,如老师直立时与四周墙面平行,而向前、向后倾斜则只与左右墙面平行,而向左、右倾斜则与前后黑板面平行。然后引导学生从中抽象概括出定理。

高中数学教学设计5

  一、教学目标

  1、知识目标:理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的相互转换;理解对数的运算性质,形成知识技能;

  2、能力目标:通过实例让学生认识对数的模型,让学生有能力去解决今后有关于对数的问题,同时让学生学会观察和动手,通过做练习,使学生感受到理论与实践的统一,锻炼学生的'动手能力;

  3、分析目标:通过让学生分组进行探究活动,在探究中分析各种思维的技巧,掌握对数运算的重要性质。

  二、教学理念

  为了调动学生学习的积极性,使学生化被动为主动,从学习中体会快乐。本节课我引导学生从实例出发,引发学生的思考,从中认识对数的模型,体会对数的必要性。在教学重难点上,我步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率。让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。

  三、教法学法分析

  1、教法分析

  新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教法:实例引入法、开放式探究法、启发式引导法。

  2、学法分析

  “授人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:观察发现法、小组讨论法、归纳总结法。

  四、教材分析

  本节讲对数的概念和运算性质主要是为后面学习对数函数做准备。这在解决一些日常生活问题及科研中起着十分重要的作用。同时,通过对数概念的学习,对培养学生对立统一、相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义。

  五、教学重点与难点

  重点 :(1)对数的定义;

  故可以设

  m?am,n?an

  那么 mn?am?n

  由对数的定义可以得到

  logam?m,logan?n, logam?n?m?n

  将m和n分别带入,那么可以得到如下结论: logam?n?logam?logan

  可以以此为例,让学生在课堂上推导出如下运算性质的另外两个公式: 对数运算性质:

  如果a?0,且a?1,m?0,n?0,那么:

  (1)logam?n?logam?logan

  (2)loga m

  logamlogan n

  (3)logamn?nlogam(n?r) 6. 引入实例,加深对公式的理解

  例2.求下列各式的值

  (1)log2(47?25);

  (2)lg;

  解:(1) log 4 7 ? (2) lg2 5)2(

  log247log2257log245log227251 19

  lg1025 25

高中数学教学设计6

  教学准备

  教学目标

  1、掌握平面向量的数量积及其几何意义;

  2、掌握平面向量数量积的重要性质及运算律;

  3、了解用平面向量的数量积可以处理垂直的问题;

  4、掌握向量垂直的条件。

  教学重难点

  教学重点:平面向量的数量积定义

  教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用

  教学过程

  1、平面向量数量积(内积)的`定义:已知两个非零向量a与b,它们的夹角是θ,

  则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b = |a||b|cosq,(0≤θ≤π)。

  并规定0向量与任何向量的数量积为0。

  ×探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?

  2、两个向量的数量积与实数乘向量的积有什么区别?

  (1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定。

  (2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分。符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替。

  (3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0。因为其中cosq有可能为0。

高中数学教学设计7

  一、学习目标与任务

  1、学习目标描述

  知识目标

  (A)理解和掌握圆锥曲线的第一定义和第二定义,并能应用第一定义和第二定义来解题。

  (B)了解圆锥曲线与现实生活中的联系,并能初步利用圆锥曲线的知识进行知识延伸和知识创新。

  能力目标

  (A)通过学生的操作和协作探讨,培养学生的实践能力和分析问题、解决问题的能力。

  (B)通过知识的再现培养学生的创新能力和创新意识。

  (C)专题网站中提供各层次的例题和习题,解决各层次学生的学习过程中的各种的需要,从而培养学生应用知识的能力。

  德育目标

  让学生体会知识产生的全过程,培养学生运动变化的辩证唯物主义思想。

  2、学习内容与学习任务说明

  本节课的内容是圆锥曲线的第一定义和圆锥曲线的统一定义,以及利用圆锥曲线的定义来解决轨迹问题和最值问题。

  学习重点:圆锥曲线的第一定义和统一定义。

  学习难点:圆锥曲线第一定义和统一定义的应用。

  明确本课的重点和难点,以学习任务驱动为方式,以圆锥曲线定义和定义应用为中心,主动操作实验、大胆分析问题和解决问题。

  抓住本节课的重点和难点,采取的基于学科专题网站下的三者结合的教学模式,突出重点、突破难点。

  充分利用《圆锥曲线》专题网站内的内容,在着重学习内容的基础上,内延外拓,培养学生的创新精神和克服困难的信心。

  二、学习者特征分析

  (说明学生的学习特点、学习习惯、学习交往特点等)

  l本课的学习对象为高二下学期学生,他们经过近两年的高中学习,已经有一定的学习基础和分析问题、解决问题的能力,基本的计算机操作较为熟练。

  高二年下学期学生由于高考的压力,他们保持着传统教学的学习习惯,在

  l课堂上的主体作用的体现不是太充分,但是如果他们还是乐于尝试、勇于探索的。

  高二年的学生在学习交往上“个别化学习”和“协作讨论学习”并存,也就是说学生是具有一定的群体性小组交流能力与协同讨论学习能力的,还是能完成上课时教师布置的协作学习任务的。

  三、学习环境选择与学习资源设计

  1.学习环境选择(打√)

  (1)Web教室(√)(2)局域网(3)城域网(4)校园网(√)(5)Internet(√)

  (6)其它

  2、学习资源类型(打√)

  (1)课件(网络课件)(√)(2)工具(3)专题学习网站(√)(4)多媒体资源库

  (5)案例库(6)题库(7)网络课程(8)其它

  3、学习资源内容简要说明

  (说明名称、网址、主要内容等)

  《圆锥曲线专题网站》:从自然与科技、定义与应用、性质与实践和创新与未来四个方面围绕圆锥曲线进行探讨与研究。(IP:192.168.3.134)

  用Flash5、几何画板和Authorware6制作可操作且具有交互性的`网络课件放在专题网站里。

  四、学习情境创设

  1、学习情境类型(打√)

  (1)真实性情境(√)(2)问题性情境(√)

  (3)虚拟性情境(√)(4)其它

  2、学习情境设计

  真实性情境:用Flash5制作的一系列教学软件。用几何画板制作的《圆锥曲线的统一定义》的教学软件。

  问题性情境:圆锥曲线的截取方法、圆锥曲线的各种定义、典型例题。

  虚拟性情境:Authorware6制作的《圆锥曲线的截取》,模拟曲线截取。

  五、学习活动的组织

  1、自主学习设计(打√并填写相关内容)

  (1)抛锚式

  (2)支架式(√)相应内容:圆锥曲线的第一定义和统一定义。

  使用资源:数学教材、专题网站及专题网站下的多媒体教学软件。

  学生活动:分析、操作、协作讨论、总结、提交结论。

  教师活动:问题的提出。学习资源获取路径的指导。问题解答和咨询。

  (3)随机进入式(√)相应内容:圆锥曲线定义的典型应用。

  使用资源:轨迹问题、最值问题、其它问题三种典型例题以及各个题目的动画演示和答案。

  学生活动:根据自身情况选题、分析题目、协作讨论、解答题目。

  教师活动:讲解例题,总结点评学生做题过程中的问题。

  (4)其它

  2、协作学习设计(打√并填写相关内容)

  (1)竞争

  (2)伙伴(√)

  相应内容:圆锥曲线的第一定义和统一定义

  使用资源:数学教材、专题网站及专题网站下的多媒体教学软件。

  分组情况:每组三人

  学生活动:学生之间对圆锥曲线的定义展开讨论,从而达到对定义的理解和掌握。

  教师活动:问题的提出。学习资源获取路径的指导。问题解答和咨询。

  (3)协同(√)

  相应内容:圆锥曲线定义的典型应用。

  使用资源:轨迹问题、最值问题、其它问题三种典型例题以及各个题目的动画演示和答案。

  分组情况:每组三人。

  学生活动:通过协作讨论区,同学之间互相配合、互相帮助、各种观点互相补充。

  教师活动:总结点评学生做题过程中的问题。

  (4)辩论

  (5)角色扮演

  (6)其它

  4、教学结构流程的设计

  六、学习评价设计

  1、测试形式与工具(打√)

  (1)堂上提问(√)(2)书面练习(3)达标测试(4)学生自主网上测试(√)(5)合作完成作品(6)其它

  2、测试内容

  教师堂上提问:圆锥曲线的定义、学生提交的结论的完整性、学生协作讨论时的疑问、例题讲解过程中问题,课堂总结。

  学生自主网上测试:解决轨迹问题、最值问题、其它问题三种典型题目。

  (附)圆锥曲线专题网站设计分析

  (1)设计思路

  (A)给学生操作与实践的机会:在每一环节中建设一个可供学生操作的实验平台。

  (B)突出教学中“主导和主体”的作用:在每一环节中建设一个可供师生交流的平台。

  (C)突出知识的再创新过程和知识的延伸:如圆锥曲线的作法和知识的创新与应用。

  (D)强调教学软件的交互性:如在题目中给出提示的动画过程和解答过程。

  (E)突出和各学科的联系:如斜抛运动和行星运动等等。

  (F)强调分层次的教学:

  如在知识应用中的配置不同层次的例题和练习:

  (2)网站导航图

高中数学教学设计8

  教学目标

  1.明确等差数列的定义.

  2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题

  3.培养学生观察、归纳能力.

  教学重点

  1. 等差数列的概念;

  2. 等差数列的通项公式

  教学难点

  等差数列“等差”特点的理解、把握和应用

  教具准备

  投影片1张

  教学过程

  (I)复习回顾

  师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)

  (Ⅱ)讲授新课

  师:看这些数列有什么共同的特点?

  1,2,3,4,5,6; ①

  10,8,6,4,2,…; ②

  生:积极思考,找上述数列共同特点。

  对于数列①(1≤n≤6);(2≤n≤6)

  对于数列②-2n(n≥1)(n≥2)

  对于数列③(n≥1)(n≥2)

  共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

  师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的'数列,我们把它叫做等差数。

  一、定义:

  等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

  如:上述3个数列都是等差数列,它们的公差依次是1,-2, 。

  二、等差数列的通项公式

  师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:

  若将这n-1个等式相加,则可得:

  即:即:即:……

  由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。

  如数列①(1≤n≤6)

  数列②:(n≥1)

  数列③:(n≥1)

  由上述关系还可得:即:则:=如:三、例题讲解

  例1:(1)求等差数列8,5,2…的第20项

  (2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

  解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。

  (Ⅲ)课堂练习

  生:(口答)课本P118练习3

  (书面练习)课本P117练习1

  师:组织学生自评练习(同桌讨论)

  (Ⅳ)课时小结

  师:本节主要内容为:①等差数列定义。

  即(n≥2)

  ②等差数列通项公式 (n≥1)

  推导出公式:(V)课后作业

  一、课本P118习题3.2 1,2

  二、1.预习内容:课本P116例2P117例4

  2.预习提纲:

  ①如何应用等差数列的定义及通项公式解决一些相关问题?

  ②等差数列有哪些性质?

高中数学教学设计9

  重点难点教学:

  1.正确理解映射的概念;

  2.函数相等的两个条件;

  3.求函数的定义域和值域。

  教学过程:

  1.使学生熟练掌握函数的概念和映射的定义;

  2.使学生能够根据已知条件求出函数的定义域和值域; 3.使学生掌握函数的.三种表示方法。

  教学内容:

  1.函数的定义

  设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么称:fAB?为从集合A到集合B的一个函数(function),记作:,yf A其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{|}f A?叫值域(range)。显然,值域是集合B的子集。

  注意:

  ① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

  ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

  2.构成函数的三要素定义域、对应关系和值域。

  3、映射的定义

  设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

  4.区间及写法:

  设a、b是两个实数,且a

  (1)满足不等式axb??的实数x的集合叫做闭区间,表示为[a,b];

  (2)满足不等式axb??的实数x的集合叫做开区间,表示为(a,b);

  5.函数的三种表示方法

  ①解析法

  ②列表法

  ③图像法

高中数学教学设计10

  提出问题:

  新课程认为知识不是单方面通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(教师指导和同学的帮助)协作,主动建构而获得的。它强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。通过多年教学实践和对新课程的认识,我认为若遵循这个原则进行数学课堂教学,学生的学习将是一种高效的活动。

  教材中的地位:

  本节内容是在指数范围扩充到实数的基础上引入指数函数的,而指数函数是高中研究的第一种具体函数。是在初中已经初步探讨了正比例函数,反比例函数,一次函数,二次函数的图像和性质的基础上,在进一步学习了函数的概念及有关性质的前提下,去研究学习的。重点是指数函数的图像及性质,难点在于弄清楚底数a对于函数变化的影响。这节课主要是学生利用描点法画出函数的图像,并描述出函数的图像特征,从而指出函数的性质。使学生从形到数的熟悉,体验研究函数的过程与思路,实现意识的深化。

  设计背景:

  在新教材的教学中,我慢慢体会到新教材渗透的、螺旋式上升的基本理念,知识点的形成过程经历从具体的实例引入,形成概念,再次运用于实际问题或具体数学问题的过程,它的应用性,实用性更明显的体现出来。学数学重在培养学生的思维品质,经过多年的数学学习,学生还是害怕学数学,尤其高中的数学,它对于学生来说显得很抽象。所以如果再让让学生感到数学离我们的生活太远,那么将很难激发他们的学习爱好。所以在教学中我尽力抓住知识的本质,以实际问题引入新知识。另外,就本章来说,指数函数是学习函数概念及基本性质之后研究的第一个重要的函数,让学生学会研究一个新的具体函数的方法比学会本身的知识更重要。在这个过程中,所有的知识都是生疏的,在大脑中没有形成基本的框架结构,需要老师的引导,使他们逐渐建立。数学中任何知识的形成都体现出它的思想与方法,因而授课中注重让学生领悟其中的思想,运用其中的方法去学习新的知识,是非常重要的。

  教学目标:

  一、知识:

  理解指数函数的定义,能初步把握指数函数的图像,性质及其简单应用。

  二、过程与方法:

  由实例引入指数函数的概念,利用描点作图的方法做出指数函数的图像,(有条件的话借助计算机演示验证指数函数图像)由图像研究指数函数的性质。利用性质解决实际问题。

  三、能力:

  1.通过指数函数的图像和性质的研究,培养学生观察,分析和归纳的能力,进一步体会数形结合的思想方法。

  2.通过对指数函数的研究,使学生能把握函数研究的基本方法。

  教学过程:

  由实际问题引入:

  问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,?1个这样的细胞分裂x次后,得到的细胞的个数y与x之间的关系是什么?

  分裂次数与细胞个数

  1,2;2,2×2=22;3,2×2×2=23;????;x,2×2×……×2=2x

  归纳:y=2x

  问题2:某种放射性物质不断变化为其它物质,每经过1年剩留的这种物质是原来的84%,那么经过x年后剩留量y与x的关系是什么?

  经过1年,剩留量y=1×84%=;经过2年,剩留量y=×=?经过x年,剩留量y=

  寻找异同:

  你能从以上的两个例子中得到的关系式里找到什么异同点吗?

  共同点:变量x与y构成函数关系式,是指数的形式,自变量在指数位置,底数是常数;不同点:底数的取值不同。

  那么,今天我们来学习新的一个基本函数:指数函数

  得到指数函数的定义:定义:形如y=ax(a>0且a≠1)的函数叫做指数函数。

  在以前我们学过的函数中,一次函数用形如y=kx+b(k≠0)的形式表示,反比例函数用形如y=k/x(k≠0)表示,二次函数y=ax2+bx+c(a≠0)表示。对于其一

  般形式上的系数都有相应的限制。问:为什么指数函数对底数有这样的要求呢?若a=0,当x>0时,恒等于0,没有研究价值;当x≤0时,无意义。

  若a

  若a=1,则=1,是一个常量,也没有研究的必要。

  所以有规定且a>0且a≠1。

  由定义,我们可以对指数函数有一初步熟悉。

  进一步理解函数的定义:

  指数函数的定义域:在我们学过的指数运算中,指数可以是有理数,当指数是无理数时,也是一个确定的实数,对于无理数,学过的有理指数幂的性质和运算法则都适用,所以指数函数的定义域为R。

  研究函数的途径:由函数的图像的性质,从形与数两方面研究。

  学习函数的一个很重要的目标就是应用,那么首先要对函数作一研究,研究函数的图像及性质,然后利用其图像性质去解决数学问题和实际问题。根据以往的经验,你会从那几个角度考虑?(图像的分布范围,图像的变化趋势)图像的分布情况与函数的定义域,值域有关,函数的变化趋势体现函数的单调性。引导学生从定义域,值域,单调性,奇偶性,与坐标轴的交点情况着手开始。

  首先我们做出指数函数的.图像,我们研究一般性的事物,常用的方法是:由特殊到一般。

  我们以具体函数入手,让学生以小组形式取不同底数的指数函数画它们的图像,将学生画的函数图像展示,(画函数的图像的步骤是:列表,描点,连线。)。最后,老师在黑板(电脑)上演示列表,描点,连线的过程,并且,画出取不同的值时,函数的图像。

  要求学生描述出指数函数图像的特征,并试着描述出性质。

  数学发展的历史表明,每一个重要的数学概念的形成和发展,其中都有丰富的经历,新课程较好的体现了这点。对新课程背景下的学生而言,数学的知识应该是一个数学化的过程,即通过对常识材料进行细致的观察、思考,借助于分析、比较、综合、抽象、概括等思维活动,对常识材料进行去粗取精、去伪存真的精加工。该案例正是从数学研究和数学实验的过程中进行设计。虽然学生的思维不一定真实的重演了人类对数学知识探索的全过程,但确确实实通过实验、观察、比较、分析、归纳、抽象、概括等思维活动,在探索中将数学数学化,从而才使学生对数学学习产生了乐趣,对数学的研究方法有了一定的了解。

  虽然学生要学的数学是历史上前人已建构好了的,但对他们而言,仍是全新的、未知的,需要用他们自己的学习活动来再现类似的过程。该案例正是从创设问题情景作为教学设计的重要的内容之一。教师应该把教学设计成学生动手操作、观察猜想、揭示规律等一系列过程,侧重于学生的探索、分析与思考,侧重于过程的探究及在此过程中所形成的一般数学能力。

  教师的地位应由主导者转变为引导者,使教学活动真正成为学生的活动。在教学过程中,把学习的主动权交给学生,在时间和空间上保证学生在教师的指导下,学生能自己独立自主的探究学习。使教学活动始终处于学生的“最近发展区”,使每一个学生通过自己的努力,在自己原有的基础上都有所获,都有提高。总之,通过案例研究,不断研究新教材、新理念,不断调整教学策略优化课堂教学,培养学生探究学习与创新学习能力将是我们在数学教学中要继续探究的课题。

高中数学教学设计11

  一、教学内容分析

  圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象,恰当地利用定义解题,许多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

  二、学生学习情况分析

  我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

  三、设计思想

  由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情。在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率。

  四、教学目标

  1、深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

  2、通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

  3、借助多媒体辅助教学,激发学习数学的兴趣。

  五、教学重点与难点:

  教学重点

  1、对圆锥曲线定义的理解

  2、利用圆锥曲线的定义求“最值”

  3、“定义法”求轨迹方程

  教学难点:

  巧用圆锥曲线定义解题

  六、教学过程设计

  【设计思路】

  (一)开门见山,提出问题

  一上课,我就直截了当地给出例题1:

  (1)已知A(-2,0),B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是()。

  (A)椭圆(B)双曲线(C)线段(D)不存在

  (2)已知动点M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是()。

  (A)椭圆(B)双曲线(C)抛物线(D)两条相交直线

  【设计意图】

  定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

  为了加深学生对圆锥曲线定义理解,我以圆锥曲线的.定义的运用为主线,精心准备了两道练习题。

  【学情预设】

  估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折——如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)25

  这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|5入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。

  在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。以深化对概念的理解。

  (二)理解定义、解决问题

  例2:

  (1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910相内切,求△ABC面积的最大值。

  (2)在(1)的条件下,给定点P(-2,2),求|PA|

  【设计意图】

  运用圆锥曲线定义中的数量关系进行转化,使问题化归为几何中求最大(小)值的模式,是解析几何问题中的一种常见题型,也是学生们比较容易混淆的一类问题。例2的设置就是为了方便学生的辨析。

  【学情预设】

  根据以往的经验,多数学生看上去都能顺利解答本题,但真正能完整解答的可能并不多。事实上,解决本题的关键在于能准确写出点A的轨迹,有了练习题1的铺垫,这个问题对学生们来讲就显得颇为简单,因此面对例2(1),多数学生应该能准确给出解答,但是对于例2(2)这样相对比较陌生的问题,学生就无从下手。我提醒学生把3/5和离心率联系起来,这样就容易和第二定义联系起来,从而找到解决本题的突破口。

  (三)自主探究、深化认识

  如果时间允许,练习题将为学生们提供一次数学猜想、试验的机会。

  练习:

  设点Q是圆C:(x1)2225|AB|的最小值。3y225上动点,点A(1,0)是圆内一点,AQ的垂直平分线与CQ交于点M,求点M的轨迹方程。

  引申:若将点A移到圆C外,点M的轨迹会是什么?

  【设计意图】练习题设置的目的是为学生课外自主探究学习提供平台,当然,如果课堂上时间允许的话,

  可借助“多媒体课件”,引导学生对自己的结论进行验证。

  【知识链接】

  (一)圆锥曲线的定义

  1、圆锥曲线的第一定义

  2、圆锥曲线的统一定义

  (二)圆锥曲线定义的应用举例

  1、双曲线1的两焦点为F1、F2,P为曲线上一点,若P到左焦点F1的距离为12,求P到右准线的距离。

  2、|PF1||PF2|2P为等轴双曲线x2y2a2上一点,F1、F2为两焦点,O为双曲线的中心,求的|PO|取值范围。

  3、在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。

  4、例题:

  (1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求|MA|+|MF|的最小值。

  (2)已知A(,3)为一定点,F为双曲线1的右焦点,M在双曲线右支上移动,当|AM||MF|最小时,求M点的坐标。

  (3)已知点P(-2,3)及焦点为F的抛物线y,在抛物线上求一点M,使|PM|+|FM|最小。

  5、已知A(4,0),B(2,2)是椭圆1内的点,M是椭圆上的动点,求|MA|+|MB|的最小值与最大值。

  七、教学反思

  1、本课将借助于,将使全体学生参与活动成为可能,使原来令人难以理解的抽象的数学理论变得形象,生动且通俗易懂,同时,运用“多媒体课件”辅助教学,节省了板演的时间,从而给学生留出更多的时间自悟、自练、自查,充分发挥学生的主体作用,这充分显示出“多媒体课件”与探究合作式教学理念的有机结合的教学优势。

  2、利用两个例题及其引申,通过一题多变,层层深入的探索,以及对猜测结果的检测研究,培养学生思维能力,使学生从学会一个问题的求解到掌握一类问题的解决方法,循序渐进的让学生把握这类问题的解法;将学生容易混淆的两类求“最值问题”并为一道题,方便学生进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。

  总之,如何更好地选择符合学生具体情况,满足教学目标的例题与练习、灵活把握课堂教学节奏仍是我今后工作中的一个重要研究课题,而要能真正进行素质教育,培养学生的创新意识,自己首先必须更新观念——在教学中适度使用多媒体技术,让学生有参与教学实践的机会,能够使学生在学习新知识的同时,激发起求知的欲望,在寻求解决问题的办法的过程中获得自信和成功的体验,于不知不觉中改善了他们的思维品质,提高了数学思维能力。

高中数学教学设计12

  一、教材分析

  数学归纳法是一种重要的数学证明方法,在高中数学内容中占有重要的地位,其中体现的数学思想方法对学生进一步学习数学、领悟数学思想至关重要。本课是数学归纳法的第一节课,前面学生对等差数列、数列求和、二项式定理等知识有较全面的把握和较深入的理解,初步掌握了由有限多个特殊事例得出一般结论的推理方法,即不完全归纳法,这是研究数学问题,猜想或发现数学规律的重要手段。但是,由有限多个特殊事例得出的结论不一定正确,这种推理方法不能作为一种论证方法。因此,在不完全归纳法的基础上,必须进一步学习严谨的科学的论证方法——数学归纳法,这是促进学生从有限思维发展到无限思维的一个重要环节,同时本节内容又是培养学生严密的推理能力、训练学生的抽象思维能力、体验数学内在美的好素材。

  二、教学目标

  学生通过数列等相关知识的学习,已经基本掌握了不完全归纳法,已经由一定的观察、归纳、猜想能力。

  根据教学内容特点和教学大纲,结合学生实际而制定以下教学目标:

  1.知识目标

  (1)了解由有限多个特殊事例得出的一般结论不一定正确。

  (2)初步理解数学归纳法原理。

  (3)能以递推思想为指导,理解数学归纳法证明数学命题的两个步骤一个结论。

  (4)会用数学归纳法证明与正整数相关的简单的恒等式。

  2.能力目标

  (1)通过对数学归纳法的学习,使学生初步掌握观察、归纳、猜想、分析能力和严密的逻辑推理能力。

  (2)在学习中培养学生大胆猜想,小心求证的辨证思维素质以及发现问题、提出问题的意识和数学交流的能力。

  3.情感目标

  (1)通过对数学归纳法原理的探究,亲历知识的构建过程,领悟其中所蕴含的数学思想和辨正唯物主义观点。

  (2)体验探索中挫折的艰辛和成功的快乐,感悟数学的内在美,激发学生学习热情,使学生喜欢数学。

  (3)学生通过置疑与探究,初步形成正确的数学观,创新意识和严谨的科学精神。

  三、教学重点与难点

  1.教学重点

  借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,运用它证明一些与正整数有关的简单恒等式,特别要注意递推步骤中归纳假设的运用和恒等变换的运用。

  2.教学难点

  (1)如何理解数学归纳法证题的严密性和有效性。

  (2)递推步骤中如何利用归纳假设,即如何利用假设证明当时结论正确。

  四、教学方法

  本节课采用交往性教学方法,以学生及其发展为本,一切从学生出发。在教师组织启发下,通过创设问题情境,激发学习欲望。师生之间、学生之间共同探究多米诺骨牌倒下的原理,并类比多米诺骨牌倒下的原理,探究数学归纳法的原理、步骤;培养学生归纳、类比推理的能力,进而应用数学归纳法,证明一些与正整数n有关的简单数学命题;提高学生的应用能力,分析问题、解决问题的能力。既重视教师的组织引导,又强调学生的主体性、主动性、交流性和合作性。

  五、教学过程

  (一)创设情境,提出问题

  情境一:根据观察某学校第一个到校的女同学,第二个到校的也是女同学,第三个到校的还是女同学,于是得出:这所学校的学生全部是女同学。

  情境二:平面内三角形内角和是,四边形内角和是,五边形内角和是,于是得出:凸边形内角和是。

  情境三:数列的通项公式为,可以求得,,,,于是猜想出数列的通项公式为。

  结论:运用有限多个特殊事例得出的一般性结论,即不完全归纳法不一定正确。因此它不

  能作为一种论证的方法。

  提出问题:如何寻找一个科学有效的方法证明结论的正确性呢?我们本节课所要学习的数

  学归纳法就是解决这一问题的方法之一。

  (二)实验演示,探索解决问题的方法

  1.几何画板演示动画多米诺骨牌游戏,师生共同探讨:要让这些骨牌全部倒下,必

  须具备那些条件呢?(学生可以讨论,加以教师点拨)

  ①第一块骨牌必须倒下。

  ②两块连续的骨牌,当前一块倒下,后面一块必须倒下。

  (启发学生转换成数学符号语言:当第块倒下,则第块必须倒下)

  教师总结:数学归纳法的原理就如同多米诺骨牌一样。

  2.学生类比多米诺骨牌原理,探究出证明有关正整数命题的方法,从而导出本课的.重心:数学归纳法的原理及其证明的两个步骤。(给学生思考的时间,教师提问,学生回答,教师补充完善,对学生的回答给予肯定和鼓励)

  数学归纳法公理:(板书)

  (1)(递推基础)当取第一个值(例如等)结论正确;

  (2)(递推归纳)假设当时结论正确;(归纳假设)

  证明当时结论也正确。(归纳证明)

  那么,命题对于从开始的所有正整数都成立。

  教师总结:步骤(1)是数学归纳法的基础,步骤(2)建立了递推过程,两者缺一不

  可,这就是数学归纳法。

  (三)迁移应用,理解升华

  例1:用数学归纳法证明:等差数列中,为首项,为公差,则通项公式为.①

  选题意图:让学生注意:①数学归纳法是一种完全归纳的证明方法,它适用于与正整数有关的问题;

  ②两个步骤,一个结论缺一不可,否则结论不成立;

  ③在证明递推步骤时,必须使用归纳假设,必须进行恒等变换。

  此时学生心中已有一个初步的证明模式,教师应该规范板书,给学生提供一个示范。

  证明:(1)当时,等式左边,等式右边,等式①成立.

  (2)假设当时等式①成立,即有

  那么,当时,有所以当时等式①也成立。

  根据(1)和(2),可知对任何,等式①都成立。

  例2:用数学归纳法证明:当时

  选题意图:通过师生共同活动,使学生进一步熟悉数学归纳法证题的两个步骤和一个结论。

  例3:用数学归纳法证明:当时

  选题意图:①进一步让学生理解数学归纳法的严密性和合理性,从而从感性认识上升为理性认识;

  ②掌握从到时等式左边的变化情况,合理的进行添项、拆项、合并项等。

  (四)反馈练习,巩固提高

  课堂练习:用数学归纳法证明:当时

  (练习让学生独立完成,上黑板板演,要求书写工整,步骤完整,表述清楚,如果发现学

  生证明过程中的错误,教师及时纠正、剖析,同时对学生板演好的方面予以肯定和鼓励。)

  教师总结:利用数学归纳法证明和正整数相关的命题时,要注意以下三句话:递推基础不

  可少,归纳假设要用到,结论写明莫忘掉。

  (五)反思总结

  学生思考后,教师提问,让同学相互补充完善,教师最后总结,这一环节可以培养学

  生抽象、归纳、概括、总结的能力,同时教师也可以及时了解学生的掌握情况,以便弥补和及时调整下节课的教学方向。

  小结:(1)归纳法是一种由特殊到一般的推理方法,分完全归纳法和不完全归纳法两种,

  而不完全归纳法得出的结论不具有可靠性,必须用数学归纳法进行严格证明;

  (2)数学归纳法作为一种证明方法,用于证明一些与正整数n有关数学命题,它的基本思想是递推思想,它的证明过程必须是两步,最后还有结论,缺一不可;

  (3)递推归纳时从到,必须用到归纳假设,并进行适当的恒等变换。

  (六)作业布置

  选修2-2习题2.3第1题第2题

高中数学教学设计13

  一、教学目标

  1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。

  2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。

  3、通过对四种命题之间关系的学习,培养学生逻辑推理能力

  4、初步培养学生反证法的数学思维。

  二、教学分析

  重点:四种命题;难点:四种命题的关系

  1。本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。

  2。教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题,

  3.“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。

  三、教学手段和方法(演示教学法和循序渐进导入法)

  1。以故事形式入题

  2多媒体演示

  四、教学过程

  (一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的.没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!

  设计意图:创设情景,激发学生学习兴趣

  (二)复习提问:

  1.命题“同位角相等,两直线平行”的条件与结论各是什么?

  2.把“同位角相等,两直线平行”看作原命题,它的逆命题是什么?

  3.原命题真,逆命题一定真吗?

  “同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.

  学生活动:

  口答:(l)若同位角相等,则两直线平行;(2)若一个四边形是正方形,则它的四条边相等.

  设计意图: 通过复习旧知识,打下学习否命题、逆否命题的基础.

  (三)新课讲解:

  1.命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。

  2.把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。

  3.把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。

  (四)组织讨论:

  让学生归纳什么是否命题,什么是逆否命题。

  例1及例2

  (五)课堂探究:“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?

  学生活动:

  讨论后回答

  这两个逆否命题都真.

  原命题真,逆否命题也真

  引导学生讨论原命题的真假与其他三种命题的真

  假有什么关系?举例加以说明,同学们踊跃发言。

  (六)课堂小结:

  1、一般地,用p和q分别表示原命题的条件和结论,用¬p和¬q分别表示p和q否定时,四种命题的形式就是:

  原命题若p则q;

  逆命题若q则p;(交换原命题的条件和结论)

  否命题,若¬p则¬q;(同时否定原命题的条件和结论)

  逆否命题若¬q则¬p。(交换原命题的条件和结论,并且同时否定)

  2、四种命题的关系

  (1).原命题为真,它的逆命题不一定为真.

  (2).原命题为真,它的否命题不一定为真.

  (3).原命题为真,它的逆否命题一定为真

  (七)回扣引入

  分析引入中的笑话,先讨论,后总结:现在我们来分析一下主人说的四句话:

  第一句:“该来的没来”

  其逆否命题是“不该来的来了”,甲认为自己是不该来的,所以甲走了。

  第二句:“不该走的走了”,其逆否命题为“该走的没走”,乙认为自己该走,所以乙也走了。

  第三句:“俺说的不是你(指乙)”其值为真其非命题:“俺说的是你”为假,则说的是他(指丙)为真。所以,丙认为说的是自己,所以丙也走了。

  同学们,生活中处处是数学,期待我们善于发现的眼睛

  五、作业

  1.设原命题是“若

  断它们的真假. ,则 ”,写出它的逆命题、否命题与逆否命题,并分别判

  2.设原命题是“当 时,若 ,则 ”,写出它的逆命题、否定命与逆否命题,并分别判断它们的真假.

高中数学教学设计14

  教学目标:

  1、了解反函数的概念,弄清原函数与反函数的定义域和值域的关系。

  2、会求一些简单函数的反函数。

  3、在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识。

  4、进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力。

  教学重点:

  求反函数的方法。

  教学难点:

  反函数的概念。

  教学过程:

  一、创设情境,引入新课

  1、复习提问

  ①函数的概念

  ②y=f(x)中各变量的意义

  2、同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是时间t的函数;在t=中,时间t是位移S的函数。在这种情况下,我们说t=是函数S=vt的反函数。什么是反函数,如何求反函数,就是本节课学习的内容。

  3、板书课题

  由实际问题引入新课,激发了学生学习兴趣,展示了教学目标。这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性。

  二、实例分析,组织探究

  1、问题组一:

  (用投影给出函数与;与()的图象)

  (1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称。是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算。同样,与()也互为逆运算。)

  (2)由,已知y能否求x?

  (3)是否是一个函数?它与有何关系?

  (4)与有何联系?

  2、问题组二:

  (1)函数y=2x1(x是自变量)与函数x=2y1(y是自变量)是否是同一函数?

  (2)函数(x是自变量)与函数x=2y1(y是自变量)是否是同一函数?

  (3)函数()的定义域与函数()的值域有什么关系?

  3、渗透反函数的概念。

  (教师点明这样的函数即互为反函数,然后师生共同探究其特点)

  从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力。

  通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础。

  三、师生互动,归纳定义

  1、(根据上述实例,教师与学生共同归纳出反函数的定义)

  函数y=f(x)(x∈A)中,设它的值域为C。我们根据这个函数中x,y的关系,用y把x表示出来,得到x=j(y)。如果对于y在C中的任何一个值,通过x=j(y),x在A中都有的值和它对应,那么,x=j(y)就表示y是自变量,x是自变量y的函数。这样的函数x=j(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数。记作:。考虑到"用x表示自变量,y表示函数"的习惯,将中的x与y对调写成。

  2、引导分析:

  1)反函数也是函数;

  2)对应法则为互逆运算;

  3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;

  4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;

  5)函数y=f(x)与x=f(y)互为反函数;

  6)要理解好符号f;

  7)交换变量x、y的原因。

  3、两次转换x、y的对应关系

  (原函数中的自变量x与反函数中的函数值y是等价的`,原函数中的函数值y与反函数中的自变量x是等价的)

  4、函数与其反函数的关系

  函数y=f(x)

  函数

  定义域

  A

  C

  值域

  C

  A

  四、应用解题,总结步骤

  1、(投影例题)

  【例1】求下列函数的反函数

  (1)y=3x—1(2)y=x1

  【例2】求函数的反函数。

  (教师板书例题过程后,由学生总结求反函数步骤。)

  2、总结求函数反函数的步骤:

  1°由y=f(x)反解出x=f(y)。

  2°把x=f(y)中x与y互换得。

  3°写出反函数的定义域。

  (简记为:反解、互换、写出反函数的定义域)【例3】

  (1)有没有反函数?

  (2)的反函数是________。

  (3)(x<0)的反函数是__________。

  在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数。在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握。

  通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解。

  通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力。

  题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进。并体现了对定义的反思理解。学生思考练习,师生共同分析纠正。

  五、巩固强化,评价反馈

  1、已知函数y=f(x)存在反函数,求它的反函数y=f(x)

  (1)y=—2x3(xR)(2)y=—(xR,且x)

  (3)y=(xR,且x)

  2、已知函数f(x)=(xR,且x)存在反函数,求f(7)的值。

  五、反思小结,再度设疑

  本节课主要研究了反函数的定义,以及反函数的求解步骤。互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究。

  (让学生谈一下本节课的学习体会,教师适时点拨)

  进一步强化反函数的概念,并能正确求出反函数。反馈学生对知识的掌握情况,评价学生对学习目标的落实程度。具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性。"问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂。

  六、作业

  习题2.4第1题,第2题

  进一步巩固所学的知识。

高中数学教学设计15

  函数的奇偶性

  函数的奇偶性是函数的重要性质,是对函数概念的深化.它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称.这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析.教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义.然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例.最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系.这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性.

  教学目标:

  1.通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力.

  2.理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性.

  3.在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的任务分析

  这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数,(k≠0),二次函数y=ax,(a≠0),故可在此基础上,引入奇、偶函数的概念,以便于学生理解.在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔.对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=f(x),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(x)=0,x∈R.在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数.关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果.

  一、问题情景

  1.观察如下两图,思考并讨论以下问题:

  (1)这两个函数图像有什么共同特征?

  (2)相应的两个函数值对应表是如何体现这些特征的.?可以看到两个函数的图像都关于y轴对称.从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同.

  对于函数f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事实上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x).此时,称函数y=x2为偶函数.

  2.观察函数f(x)=x和f(x)=的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征.

  22可以看到两个函数的图像都关于原点对称.函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈R都有f(-x)=-f(x).此时,称函数y=f(x)为奇函数.

  二、建立模型

  由上面的分析讨论引导学生建立奇函数、偶函数的定义

  1.奇、偶函数的定义

  如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫作奇函数.如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫作偶函数.

  2.提出问题,组织学生讨论

  (1)如果定义在R上的函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗? (f(x)不一定是偶函数)

  (2)奇、偶函数的图像有什么特征?

  (奇、偶函数的图像分别关于原点、y轴对称) (3)奇、偶函数的定义域有什么特征? (奇、偶函数的定义域关于原点对称)

  三、解释应用[例题]

  1.判断下列函数的奇偶性.

  注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1].

  2.已知:定义在R上的函数f(x)是奇函数,当x>0时,f(x)=x(1+x),求f(x)的表达式.

  解:(1)任取x<0,则-x>0,∴f(-x)=-x(1-x),

  而f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=x(1-x).

  (2)当x=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.

  3.已知:函数f(x)是偶函数,且在(-∞,0)上是减函数,判断f(x)在(0,+∞)上是增函数,还是减函数,并证明你的结论.

  解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x)在(0,+∞)上是增函数,证明如下:

  任取x1>x2>0,则-x1<-x2<0.

  ∵f(x)在(-∞,0)上是减函数,∴f(-x1)>f(-x2).又f(x)是偶函数,∴f(x1)>f(x2).

  ∴f(x)在(0,+∞)上是增函数.

  思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?

  [练习]

  1.已知:函数f(x)是奇函数,在[a,b]上是增函数(b>a>0),问f(x)在[-b,-a]上的单调性如何.

  2. f(x)=-x3|x|的大致图像可能是()

  3.函数f(x)=ax2+bx+c,(a,b,c∈R),当a,b,c满足什么条件时,(1)函数f(x)是偶函数.(2)函数f(x)是奇函数. 4.设f(x),g(x)分别是R上的奇函数和偶函数,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.

  四、拓展延伸

  1.有既是奇函数,又是偶函数的函数吗?若有,有多少个? 2.设f(x),g(x)分别是R上的奇函数,偶函数,试研究:(1)F(x)=f(x)·g(x)的奇偶性. (2)G(x)=|f(x)|+g(x)的奇偶性.

  3.已知a∈R,f(x)=a-,试确定a的值,使f(x)是奇函数.

  4.一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式?

【高中数学教学设计】相关文章:

高中数学教学设计03-19

高中数学的教学设计02-21

高中数学教学设计02-07

高中数学教学设计【经典】05-23

高中数学的教学设计05-27

高中数学教学设计(精品)06-11

【热门】高中数学教学设计03-20

高中数学教学设计优秀12-21

高中数学片段教学设计03-18

高中数学单元教学设计02-19