高中数学教学设计14篇
作为一位兢兢业业的人民教师,常常要写一份优秀的教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。怎样写教学设计才更能起到其作用呢?以下是小编帮大家整理的高中数学教学设计,仅供参考,欢迎大家阅读。
高中数学教学设计 篇1
一、教材分析
数学归纳法是一种重要的数学证明方法,在高中数学内容中占有重要的地位,其中体现的数学思想方法对学生进一步学习数学、领悟数学思想至关重要。本课是数学归纳法的第一节课,前面学生对等差数列、数列求和、二项式定理等知识有较全面的把握和较深入的理解,初步掌握了由有限多个特殊事例得出一般结论的推理方法,即不完全归纳法,这是研究数学问题,猜想或发现数学规律的重要手段。但是,由有限多个特殊事例得出的结论不一定正确,这种推理方法不能作为一种论证方法。因此,在不完全归纳法的基础上,必须进一步学习严谨的科学的论证方法——数学归纳法,这是促进学生从有限思维发展到无限思维的一个重要环节,同时本节内容又是培养学生严密的推理能力、训练学生的抽象思维能力、体验数学内在美的好素材。
二、教学目标
学生通过数列等相关知识的学习,已经基本掌握了不完全归纳法,已经由一定的观察、归纳、猜想能力。
根据教学内容特点和教学大纲,结合学生实际而制定以下教学目标:
1.知识目标
(1)了解由有限多个特殊事例得出的一般结论不一定正确。
(2)初步理解数学归纳法原理。
(3)能以递推思想为指导,理解数学归纳法证明数学命题的两个步骤一个结论。
(4)会用数学归纳法证明与正整数相关的简单的恒等式。
2.能力目标
(1)通过对数学归纳法的学习,使学生初步掌握观察、归纳、猜想、分析能力和严密的逻辑推理能力。
(2)在学习中培养学生大胆猜想,小心求证的辨证思维素质以及发现问题、提出问题的意识和数学交流的能力。
3.情感目标
(1)通过对数学归纳法原理的探究,亲历知识的构建过程,领悟其中所蕴含的数学思想和辨正唯物主义观点。
(2)体验探索中挫折的艰辛和成功的快乐,感悟数学的内在美,激发学生学习热情,使学生喜欢数学。
(3)学生通过置疑与探究,初步形成正确的数学观,创新意识和严谨的科学精神。
三、教学重点与难点
1.教学重点
借助具体实例了解数学归纳法的基本思想,掌握它的'基本步骤,运用它证明一些与正整数有关的简单恒等式,特别要注意递推步骤中归纳假设的运用和恒等变换的运用。
2.教学难点
(1)如何理解数学归纳法证题的严密性和有效性。
(2)递推步骤中如何利用归纳假设,即如何利用假设证明当时结论正确。
四、教学方法
本节课采用交往性教学方法,以学生及其发展为本,一切从学生出发。在教师组织启发下,通过创设问题情境,激发学习欲望。师生之间、学生之间共同探究多米诺骨牌倒下的原理,并类比多米诺骨牌倒下的原理,探究数学归纳法的原理、步骤;培养学生归纳、类比推理的能力,进而应用数学归纳法,证明一些与正整数n有关的简单数学命题;提高学生的应用能力,分析问题、解决问题的能力。既重视教师的组织引导,又强调学生的主体性、主动性、交流性和合作性。
五、教学过程
(一)创设情境,提出问题
情境一:根据观察某学校第一个到校的女同学,第二个到校的也是女同学,第三个到校的还是女同学,于是得出:这所学校的学生全部是女同学。
情境二:平面内三角形内角和是,四边形内角和是,五边形内角和是,于是得出:凸边形内角和是。
情境三:数列的通项公式为,可以求得,,,,于是猜想出数列的通项公式为。
结论:运用有限多个特殊事例得出的一般性结论,即不完全归纳法不一定正确。因此它不
能作为一种论证的方法。
提出问题:如何寻找一个科学有效的方法证明结论的正确性呢?我们本节课所要学习的数
学归纳法就是解决这一问题的方法之一。
(二)实验演示,探索解决问题的方法
1.几何画板演示动画多米诺骨牌游戏,师生共同探讨:要让这些骨牌全部倒下,必
须具备那些条件呢?(学生可以讨论,加以教师点拨)
①第一块骨牌必须倒下。
②两块连续的骨牌,当前一块倒下,后面一块必须倒下。
(启发学生转换成数学符号语言:当第块倒下,则第块必须倒下)
教师总结:数学归纳法的原理就如同多米诺骨牌一样。
2.学生类比多米诺骨牌原理,探究出证明有关正整数命题的方法,从而导出本课的重心:数学归纳法的原理及其证明的两个步骤。(给学生思考的时间,教师提问,学生回答,教师补充完善,对学生的回答给予肯定和鼓励)
数学归纳法公理:(板书)
(1)(递推基础)当取第一个值(例如等)结论正确;
(2)(递推归纳)假设当时结论正确;(归纳假设)
证明当时结论也正确。(归纳证明)
那么,命题对于从开始的所有正整数都成立。
教师总结:步骤(1)是数学归纳法的基础,步骤(2)建立了递推过程,两者缺一不
可,这就是数学归纳法。
(三)迁移应用,理解升华
例1:用数学归纳法证明:等差数列中,为首项,为公差,则通项公式为.①
选题意图:让学生注意:①数学归纳法是一种完全归纳的证明方法,它适用于与正整数有关的问题;
②两个步骤,一个结论缺一不可,否则结论不成立;
③在证明递推步骤时,必须使用归纳假设,必须进行恒等变换。
此时学生心中已有一个初步的证明模式,教师应该规范板书,给学生提供一个示范。
证明:(1)当时,等式左边,等式右边,等式①成立.
(2)假设当时等式①成立,即有
那么,当时,有所以当时等式①也成立。
根据(1)和(2),可知对任何,等式①都成立。
例2:用数学归纳法证明:当时
选题意图:通过师生共同活动,使学生进一步熟悉数学归纳法证题的两个步骤和一个结论。
例3:用数学归纳法证明:当时
选题意图:①进一步让学生理解数学归纳法的严密性和合理性,从而从感性认识上升为理性认识;
②掌握从到时等式左边的变化情况,合理的进行添项、拆项、合并项等。
(四)反馈练习,巩固提高
课堂练习:用数学归纳法证明:当时
(练习让学生独立完成,上黑板板演,要求书写工整,步骤完整,表述清楚,如果发现学
生证明过程中的错误,教师及时纠正、剖析,同时对学生板演好的方面予以肯定和鼓励。)
教师总结:利用数学归纳法证明和正整数相关的命题时,要注意以下三句话:递推基础不
可少,归纳假设要用到,结论写明莫忘掉。
(五)反思总结
学生思考后,教师提问,让同学相互补充完善,教师最后总结,这一环节可以培养学
生抽象、归纳、概括、总结的能力,同时教师也可以及时了解学生的掌握情况,以便弥补和及时调整下节课的教学方向。
小结:(1)归纳法是一种由特殊到一般的推理方法,分完全归纳法和不完全归纳法两种,
而不完全归纳法得出的结论不具有可靠性,必须用数学归纳法进行严格证明;
(2)数学归纳法作为一种证明方法,用于证明一些与正整数n有关数学命题,它的基本思想是递推思想,它的证明过程必须是两步,最后还有结论,缺一不可;
(3)递推归纳时从到,必须用到归纳假设,并进行适当的恒等变换。
(六)作业布置
选修2-2习题2.3第1题第2题
高中数学教学设计 篇2
教学准备
教学目标
1、掌握平面向量的数量积及其几何意义;
2、掌握平面向量数量积的重要性质及运算律;
3、了解用平面向量的数量积可以处理垂直的问题;
4、掌握向量垂直的条件。
教学重难点
教学重点:平面向量的数量积定义
教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用
教学过程
1、平面向量数量积(内积)的`定义:已知两个非零向量a与b,它们的夹角是θ,
则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b = |a||b|cosq,(0≤θ≤π)。
并规定0向量与任何向量的数量积为0。
×探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?
2、两个向量的数量积与实数乘向量的积有什么区别?
(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定。
(2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分。符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替。
(3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0。因为其中cosq有可能为0。
高中数学教学设计 篇3
函数的奇偶性
函数的奇偶性是函数的重要性质,是对函数概念的深化.它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称.这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析.教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义.然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例.最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系.这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性.
教学目标:
1.通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力.
2.理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性.
3.在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的任务分析
这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数,(k≠0),二次函数y=ax,(a≠0),故可在此基础上,引入奇、偶函数的概念,以便于学生理解.在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔.对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=f(x),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(x)=0,x∈R.在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数.关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果.
一、问题情景
1.观察如下两图,思考并讨论以下问题:
(1)这两个函数图像有什么共同特征?
(2)相应的两个函数值对应表是如何体现这些特征的?可以看到两个函数的图像都关于y轴对称.从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同.
对于函数f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事实上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x).此时,称函数y=x2为偶函数.
2.观察函数f(x)=x和f(x)=的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征.
22可以看到两个函数的图像都关于原点对称.函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈R都有f(-x)=-f(x).此时,称函数y=f(x)为奇函数.
二、建立模型
由上面的分析讨论引导学生建立奇函数、偶函数的定义
1.奇、偶函数的定义
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫作奇函数.如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫作偶函数.
2.提出问题,组织学生讨论
(1)如果定义在R上的`函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗? (f(x)不一定是偶函数)
(2)奇、偶函数的图像有什么特征?
(奇、偶函数的图像分别关于原点、y轴对称) (3)奇、偶函数的定义域有什么特征? (奇、偶函数的定义域关于原点对称)
三、解释应用[例题]
1.判断下列函数的奇偶性.
注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1].
2.已知:定义在R上的函数f(x)是奇函数,当x>0时,f(x)=x(1+x),求f(x)的表达式.
解:(1)任取x<0,则-x>0,∴f(-x)=-x(1-x),
而f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=x(1-x).
(2)当x=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.
3.已知:函数f(x)是偶函数,且在(-∞,0)上是减函数,判断f(x)在(0,+∞)上是增函数,还是减函数,并证明你的结论.
解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x)在(0,+∞)上是增函数,证明如下:
任取x1>x2>0,则-x1<-x2<0.
∵f(x)在(-∞,0)上是减函数,∴f(-x1)>f(-x2).又f(x)是偶函数,∴f(x1)>f(x2).
∴f(x)在(0,+∞)上是增函数.
思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?
[练习]
1.已知:函数f(x)是奇函数,在[a,b]上是增函数(b>a>0),问f(x)在[-b,-a]上的单调性如何.
2. f(x)=-x3|x|的大致图像可能是()
3.函数f(x)=ax2+bx+c,(a,b,c∈R),当a,b,c满足什么条件时,(1)函数f(x)是偶函数.(2)函数f(x)是奇函数. 4.设f(x),g(x)分别是R上的奇函数和偶函数,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.
四、拓展延伸
1.有既是奇函数,又是偶函数的函数吗?若有,有多少个? 2.设f(x),g(x)分别是R上的奇函数,偶函数,试研究:(1)F(x)=f(x)·g(x)的奇偶性. (2)G(x)=|f(x)|+g(x)的奇偶性.
3.已知a∈R,f(x)=a-,试确定a的值,使f(x)是奇函数.
4.一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式?
高中数学教学设计 篇4
教学目标:
1.掌握基本事件的概念;
2.正确理解古典概型的两大特点:有限性、等可能性;
3.掌握古典概型的概率计算公式,并能计算有关随机事件的概率.
教学重点:
掌握古典概型这一模型.
教学难点:
如何判断一个实验是否为古典概型,如何将实际问题转化为古典概型问题.
教学方法:
问题教学、合作学习、讲解法、多媒体辅助教学.
教学过程:
一、问题情境
1.有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,则抽到的牌为红心的概率有多大?
二、学生活动
1.进行大量重复试验,用“抽到红心”这一事件的频率估计概率,发现工作量较大且不够准确;
2.(1)共有“抽到红心1” “抽到红心2” “抽到红心3” “抽到黑桃4” “抽到黑桃5”5种情况,由于是任意抽取的,可以认为出现这5种情况的可能性都相等;
(2)6个;即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,
这6种情况的可能性都相等;
三、建构数学
1.介绍基本事件的概念,等可能基本事件的概念;
2.让学生自己总结归纳古典概型的两个特点(有限性)、(等可能性);
3.得出随机事件发生的.概率公式:
四、数学运用
1.例题.
例1
有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取2张共有多少个基本事件?(用枚举法,列举时要有序,要注意“不重不漏”)
探究(1):一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球,共有多少个基本事件?该实验为古典概型吗?(为什么对球进行编号?)
探究(2):抛掷一枚硬币2次有(正,反)、(正,正)、(反,反)3个基本事件,对吗?
学生活动:探究(1)如果不对球进行编号,一次摸出2只球可能有两白、一黑一白、两黑三种情况,“摸到两黑”与“摸到两白”的可能性相同;而事实上“摸到两白”的机会要比“摸到两黑”的机会大.记白球为1,2,3号,黑球为4,5号,通过枚举法发现有10个基本事件,而且每个基本事件发生的可能性相同.
探究(2):抛掷一枚硬币2次,有(正,正)、(正,反)、(反,正)、(反,反)四个基本事件.
(设计意图:加深对古典概型的特点之一等可能基本事件概念的理解.)
例2
一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中
一次摸出2只球,则摸到的两只球都是白球的概率是多少?
问题:在运用古典概型计算事件的概率时应当注意什么?
①判断概率模型是否为古典概型
②找出随机事件A中包含的基本事件的个数和试验中基本事件的总数.
教师示范并总结用古典概型计算随机事件的概率的步骤
例3
同时抛两颗骰子,观察向上的点数,问:
(1)共有多少个不同的可能结果?
(2)点数之和是6的可能结果有多少种?
(3)点数之和是6的概率是多少?
问题:如何准确的写出“同时抛两颗骰子”所有基本事件的个数?
学生活动:用课本第102页图3-2-2,可直观的列出事件A中包含的基本事件的个数和试验中基本事件的总数.
问题:点数之和是3的倍数的可能结果有多少种?
(介绍图表法)
例4
甲、乙两人作出拳游戏(锤子、剪刀、布),求:
(1)平局的概率;(2)甲赢的概率;(3)乙赢的概率.
设计意图:进一步提高学生对将实际问题转化为古典概型问题的能力.
2.练习.
(1)一枚硬币连掷3次,只有一次出现正面的概率为_________.
(2)在20瓶饮料中,有3瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率为_________..
(3)第103页练习1,2.
(4)从1,2,3,…,9这9个数字中任取2个数字,
①2个数字都是奇数的概率为_________;
②2个数字之和为偶数的概率为_________.
五、要点归纳与方法小结
本节课学习了以下内容:
1.基本事件,古典概型的概念和特点;
2.古典概型概率计算公式以及注意事项;
3.求基本事件总数常用的方法:列举法、图表法.
高中数学教学设计 篇5
函数的奇偶性是函数的重要性质,是对函数概念的深化。它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称。这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析。
教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义。然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例。最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系。这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性。
教学目标
1、通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力。
2、理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性。
3、在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的。
任务分析
这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数 ,k≠0,二次函数y=ax,a≠0,故可在此基础上,引入奇、偶函数的概念,以便于学生理解。在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔。
对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=fx,一定有f0=0既是奇函数,又是偶函数的函数有fx=0,x∈R在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数。关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果。
教学设计
一、问题情景
1、观察如下两图,思考并讨论以下问题:
(1)这两个函数图像有什么共同特征?
(2)相应的两个函数值对应表是如何体现这些特征的?
可以看到两个函数的'图像都关于y轴对称。
从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同。
对于函数fx=x,有f3=9=f3,f2=4=f2,f1=1=f1。事实上,对于R内任意的一个x,都有fx=x2=x2=fx。此时,称函数y=x2为偶函数。
2、观察函数fx=x和fx= 的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征。
可以看到两个函数的图像都关于原点对称。函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值fx也是一对相反数,即对任一x∈R都有fx=fx。此时,称函数y=fx为奇函数。
二、建立模型
由上面的分析讨论引导学生建立奇函数、偶函数的定义
1奇、偶函数的定义
如果对于函数fx的定义域内任意一个x,都有fx=fx,那么函数fx就叫作奇函数。如果对于函数fx的定义域内任意一个x,都有fx=fx,那么函数fx就叫作偶函数。
2、提出问题,组织学生讨论
(1)如果定义在R上的函数fx满足f2=f2,那么fx是偶函数吗? fx不一定是偶函数
(2)奇、偶函数的图像有什么特征?
(奇、偶函数的图像分别关于原点、y轴对称)
3奇、偶函数的定义域有什么特征? (奇、偶函数的定义域关于原点对称)
三、解释应用
[例 题]
1、判断下列函数的奇偶性。
注:①规范解题格式;
②对于5要注意定义域x∈1,1]。
2、已知:定义在R上的函数fx是奇函数,当x>0时,fx=x1+x,求fx的表达式。
解:1任取x<0,则x>0,∴fx=x1x,
而fx是奇函数,∴fx=fx。∴fx=x1x。
(2)当x=0时,f0=f0,∴f0=f0,故f0=0
3、已知:函数f(x是偶函数,且在∞,0上是减函数,判断fx在0,+∞)上是增函数,还是减函数,并证明你的结论。
解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x在0,+∞)上是增函数,
证明如下:
任取x1>x2>0,则x1 ∵fx在∞,0上是减函数,∴fx1>fx2。 又fx是偶函数,∴fx1>fx2。 ∴f(x在0,+∞)上是增函数。 思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系? [练 习] 1、已知:函数fx是奇函数,在[a,b]上是增函数b>a>0,问fx在[b,a]上的单调性如何。 2fx=x3|x|的大致图像可能是 3、函数fx=ax2+bx+c,a,b,c∈R,当a,b,c满足什么条件时,1函数fx是偶函数。2函数fx是奇函数。 4设fx,gx分别是R上的奇函数和偶函数,并且fx+gx=xx+1,求fx,gx的解析式。 四、拓展延伸 1、有既是奇函数,又是偶函数的函数吗?若有,有多少个? 2设fx,gx分别是R上的奇函数,偶函数,试研究: 1Fx=fx·gx的奇偶性。 2Gx=|fx|+gx的奇偶性。 3、已知a∈R,fx=a ,试确定a的值,使fx是奇函数。 4、一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式? 教学目标: ①掌握对数函数的性质。 ②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值域及单调性。 ③注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。 教学重点与难点: 对数函数的性质的应用。 教学过程设计: ⒈复习提问:对数函数的概念及性质。 ⒉开始正课 1比较数的大小 例1比较下列各组数的大小。 ⑴loga5.1 ,loga5.9 (a>0,a≠1) ⑵log0.50.6 ,logЛ0.5 ,lnЛ 师:请同学们观察一下⑴中这两个对数有何特征? 生:这两个对数底相等。 师:那么对于两个底相等的对数如何比大小? 生:可构造一个以a为底的`对数函数,用对数函数的单调性比大小。 师:对,请叙述一下这道题的解题过程。 生:对数函数的单调性取决于底的大小:当0调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递增,所以loga5.1 板书: 解:Ⅰ)当0 ∵5.1<5.9 loga5.1="">loga5.9 Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数 ∵5.1<5.9 ∴loga5.1 师:请同学们观察一下⑵中这三个对数有何特征? 生:这三个对数底、真数都不相等。 师:那么对于这三个对数如何比大小? 生:找“中间量”,log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1, log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。 板书:略。 师:比较对数值的大小常用方法: ①构造对数函数,直接利用对数函数的单调性比大小; ②借用“中间量”间接比大小; ③利用对数函数图象的位置关系来比大小。 2函数的定义域,值域及单调性。 教学目标 1.掌握等比数列前项和公式,并能运用公式解决简单的问题. (1)理解公式的推导过程,体会转化的思想; (2)用方程的思想认识等比数列前项和公式,利用公式知三求一;与通项公式结合知三求二; 2.通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想. 3.通过公式推导的教学,对学生进行思维的严谨性的训练,培养他们实事求是的科学态度. 教学建议 教材分析 (1)知识结构 先用错位相减法推出等比数列前项和公式,而后运用公式解决一些问题,并将通项公式与前项和公式结合解决问题,还要用错位相减法求一些数列的前项和. (2)重点、难点分析 教学重点、难点是等比数列前项和公式的推导与应用.公式的推导中蕴含了丰富的数学思想、方法(如分类讨论思想,错位相减法等),这些思想方法在其他数列求和问题中多有涉及,所以对等比数列前项和公式的要求,不单是要记住公式,更重要的是掌握推导公式的方法.等比数列前项和公式是分情况讨论的,在运用中要特别注意和两种情况. 教学建议 (1)本节内容分为两课时,一节为等比数列前项和公式的推导与应用,一节为通项公式与前项和公式的综合运用,另外应补充一节数列求和问题. (2)等比数列前项和公式的推导是重点内容,引导学生观察实例,发现规律,归纳总结,证明结论. (3)等比数列前项和公式的推导的其他方法可以给出,提高学生学习的兴趣. (4)编拟例题时要全面,不要忽略的.情况. (5)通项公式与前项和公式的综合运用涉及五个量,已知其中三个量可求另两个量,但解指数方程难度大. (6)补充可以化为等差数列、等比数列的数列求和问题. 教学设计示例 课题:等比数列前项和的公式 教学目标 (1)通过教学使学生掌握等比数列前项和公式的推导过程,并能初步运用这一方法求一些数列的前项和. (2)通过公式的推导过程,培养学生猜想、分析、综合能力,提高学生的数学素质. (3)通过教学进一步渗透从特殊到一般,再从一般到特殊的辩证观点,培养学生严谨的学习态度. 教学重点,难点 教学重点是公式的推导及运用,难点是公式推导的思路. 教学用具 幻灯片,课件,电脑. 教学方法 引导发现法. 教学过程 一、新课引入: (问题见教材第129页)提出问题:(幻灯片) 二、新课讲解: 记,式中有64项,后项与前项的比为公比2,当每一项都乘以2后,中间有62项是对应相等的,作差可以相互抵消. (板书)即,① ,② ②-①得即. 由此对于一般的等比数列,其前项和,如何化简? (板书)等比数列前项和公式 仿照公比为2的等比数列求和方法,等式两边应同乘以等比数列的公比,即 (板书)③两端同乘以,得 ④, ③-④得⑤,(提问学生如何处理,适时提醒学生注意的取值) 当时,由③可得(不必导出④,但当时设想不到) 当时,由⑤得. 于是 反思推导求和公式的方法——错位相减法,可以求形如的数列的和,其中为等差数列,为等比数列. (板书)例题:求和:. 设,其中为等差数列,为等比数列,公比为,利用错位相减法求和. 解:, 两端同乘以,得, 两式相减得 于是. 说明:错位相减法实际上是把一个数列求和问题转化为等比数列求和的问题. 公式其它应用问题注意对公比的分类讨论即可. 三、小结: 1.等比数列前项和公式推导中蕴含的思想方法以及公式的应用; 2.用错位相减法求一些数列的前项和. 四、作业:略 教学目标: 1、了解反函数的概念,弄清原函数与反函数的定义域和值域的关系。 2、会求一些简单函数的反函数。 3、在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识。 4、进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力。 教学重点: 求反函数的方法。 教学难点: 反函数的概念。 教学过程: 一、创设情境,引入新课 1、复习提问 ①函数的概念 ②y=f(x)中各变量的意义 2、同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是时间t的函数;在t=中,时间t是位移S的函数。在这种情况下,我们说t=是函数S=vt的反函数。什么是反函数,如何求反函数,就是本节课学习的内容。 3、板书课题 由实际问题引入新课,激发了学生学习兴趣,展示了教学目标。这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性。 二、实例分析,组织探究 1、问题组一: (用投影给出函数与;与()的图象) (1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称。是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算。同样,与()也互为逆运算。) (2)由,已知y能否求x? (3)是否是一个函数?它与有何关系? (4)与有何联系? 2、问题组二: (1)函数y=2x1(x是自变量)与函数x=2y1(y是自变量)是否是同一函数? (2)函数(x是自变量)与函数x=2y1(y是自变量)是否是同一函数? (3)函数()的定义域与函数()的值域有什么关系? 3、渗透反函数的概念。 (教师点明这样的函数即互为反函数,然后师生共同探究其特点) 从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力。 通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础。 三、师生互动,归纳定义 1、(根据上述实例,教师与学生共同归纳出反函数的定义) 函数y=f(x)(x∈A)中,设它的值域为C。我们根据这个函数中x,y的关系,用y把x表示出来,得到x=j(y)。如果对于y在C中的任何一个值,通过x=j(y),x在A中都有的值和它对应,那么,x=j(y)就表示y是自变量,x是自变量y的函数。这样的函数x=j(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数。记作:。考虑到"用x表示自变量,y表示函数"的习惯,将中的x与y对调写成。 2、引导分析: 1)反函数也是函数; 2)对应法则为互逆运算; 3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数; 4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域; 5)函数y=f(x)与x=f(y)互为反函数; 6)要理解好符号f; 7)交换变量x、y的原因。 3、两次转换x、y的对应关系 (原函数中的自变量x与反函数中的函数值y是等价的,原函数中的函数值y与反函数中的自变量x是等价的) 4、函数与其反函数的关系 函数y=f(x) 函数 定义域 A C 值域 C A 四、应用解题,总结步骤 1、(投影例题) 【例1】求下列函数的反函数 (1)y=3x—1(2)y=x1 【例2】求函数的反函数。 (教师板书例题过程后,由学生总结求反函数步骤。) 2、总结求函数反函数的'步骤: 1°由y=f(x)反解出x=f(y)。 2°把x=f(y)中x与y互换得。 3°写出反函数的定义域。 (简记为:反解、互换、写出反函数的定义域)【例3】 (1)有没有反函数? (2)的反函数是________。 (3)(x<0)的反函数是__________。 在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数。在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握。 通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解。 通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力。 题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进。并体现了对定义的反思理解。学生思考练习,师生共同分析纠正。 五、巩固强化,评价反馈 1、已知函数y=f(x)存在反函数,求它的反函数y=f(x) (1)y=—2x3(xR)(2)y=—(xR,且x) (3)y=(xR,且x) 2、已知函数f(x)=(xR,且x)存在反函数,求f(7)的值。 五、反思小结,再度设疑 本节课主要研究了反函数的定义,以及反函数的求解步骤。互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究。 (让学生谈一下本节课的学习体会,教师适时点拨) 进一步强化反函数的概念,并能正确求出反函数。反馈学生对知识的掌握情况,评价学生对学习目标的落实程度。具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性。"问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂。 六、作业 习题2.4第1题,第2题 进一步巩固所学的知识。 教学准备 教学目标 解三角形及应用举例 教学重难点 解三角形及应用举例 教学过程 一.基础知识精讲 掌握三角形有关的定理 利用正弦定理,可以解决以下两类问题: (1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);利用余弦定理,可以解决以下两类问题: (1)已知三边,求三角; (2)已知两边和它们的夹角,求第三边和其他两角。 掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题。 二.问题讨论 思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的`讨论。 思维点拨::三角形中的三角变换,应灵活运用正、余弦定理,在求值时,要利用三角函数的有关性质。 例6:在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市O(如图)的东偏南方向300 km的海面P处,并以20 km / h的速度向西偏北的方向移动,台风侵袭的范围为圆形区域,当前半径为60 km,并以10 km / h的速度不断增加,问几小时后该城市开始受到台风的侵袭。 小结: 1.利用正弦定理,可以解决以下两类问题: (1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角); 2.利用余弦定理,可以解决以下两类问题: (1)已知三边,求三角; (2)已知两边和它们的夹角,求第三边和其他两角。 3.边角互化是解三角形问题常用的手段。 作业:P80闯关训练 一、单元教学内容 (1)算法的基本概念 (2)算法的基本结构:顺序、条件、循环结构 (3)算法的基本语句:输入、输出、赋值、条件、循环语句 二、单元教学内容分析 算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在中学教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的.重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力 三、单元教学课时安排: 1、算法的基本概念 3课时 2、程序框图与算法的基本结构 5课时 3、算法的基本语句 2课时 四、单元教学目标分析 1、通过对解决具体问题过程与步骤的分析体会算法的思想,了解算法的含义 2、通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中理解程序框图的三种基本逻辑结构:顺序、条件、循环结构。 3、经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句:输入、输出、斌值、条件、循环语句,进一步体会算法的基本思想。 4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。 五、单元教学重点与难点分析 1、重点 (1)理解算法的含义 (2)掌握算法的基本结构 (3)会用算法语句解决简单的实际问题 2、难点 (1)程序框图 (2)变量与赋值 (3)循环结构 (4)算法设计 六、单元总体教学方法 本章教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这些方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。 七、单元展开方式与特点 1、展开方式 自然语言→程序框图→算法语句 2、特点 (1)螺旋上升 分层递进 (2)整合渗透 前呼后应 (3)三线合 一 横向贯通 (4)弹性处理 多样选择 八、单元教学过程分析 1. 算法基本概念教学过程分析 对生活中的实际问题通过对解决具体问题过程与步骤的分析(喝茶,如二元一次方程组求解问题),体会算法的思想,了解算法的含义,能用自然语言描述算法。 2.算法的流程图教学过程分析 对生活中的实际问题通过模仿、操作、探索,经历通过设计流程图表达解决问题的过程,了解算法和程序语言的区别;在具体问题的解决过程中,理解流程图的三种基本逻辑结构:顺序、条件分支、循环,会用流程图表示算法。 3. 基本算法语句教学过程分析 经历将具体生活中问题的流程图转化为程序语言的过程,理解表示的几种基本算法语句:赋值语句、输入语句、输出语句、条件语句、循环语句,进一步体会算法的基本思想。能用自然语言、流程图和基本算法语句表达算法, 4. 通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。 九、单元评价设想 1.重视对学生数学学习过程的评价 关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。 2.正确评价学生的数学基础知识和基本技能 关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法 一、课题: 人教版全日制普通高级中学教科书数学第一册(上)《2.7对数》 二、指导思想与理论依据: 《数学课程标准》指出:高中数学课程应讲清一些基本内容的实际背景和应用价值,开展“数学建模”的学习活动,把数学的应用自然地融合在平常的教学中。任何一个数学概念的引入,总有它的现实或数学理论发展的需要。都应强调它的现实背景、数学理论发展背景或数学发展历史上的背景,这样才能使教学内容显得自然和亲切,让学生感到知识的发展水到渠成而不是强加于人,从而有利于学生认识数学内容的实际背景和应用的价值。在教学设计时,既要关注学生在数学情感态度和科学价值观方面的发展,也要帮助学生理解和掌握数学基础知识和基本技能,发展能力。在课程实施中,应结合教学内容介绍一些对数学发展起重大作用的历史事件和人物,用以反映数学在人类社会进步、人类文化建设中的作用,同时反映社会发展对数学发展的促进作用。 三、教材分析: 本节内容主要学习对数的概念及其对数式与指数式的互化。它属于函数领域的知识。而对数的概念是对数函数部分教学中的核心概念之一,而函数的思想方法贯穿在高中数学教学的始终。通过对数的学习,可以解决数学中知道底数和幂值求指数的问题,以及对数函数的相关问题。 四、学情分析: 在ab=N(a>0,a≠1)中,知道底数和指数可以求幂值,那么知道底数和幂值如何求求指数,从学生认知的角度自然就产生了这样的需要。因此,在前面学习指数的基础上学习对数的概念是水到渠成的事。 五、教学目标: (一)教学知识点: 1.对数的概念。 2.对数式与指数式的互化。 (二)能力目标: 1.理解对数的概念。 2.能够进行对数式与指数式的互化。 (三)德育渗透目标: 1.认识事物之间的相互联系与相互转化, 2.用联系的观点看问题。 六、教学重点与难点: 重点是对数定义,难点是对数概念的理解。 七、教学方法: 讲练结合法八、教学流程: 问题情景(复习引入)——实例分析、形成概念(导入新课)——深刻认识概念(对数式与指数式的互化)——变式分析、深化认识(对数的性质、对数恒等式,介绍自然对数及常用对数)——练习小结、形成反思(例题,小结) 八、教学反思: 对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,教材内容的处理收到了一定的`预期效果,尤其是练习的处理,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。然而还有一些缺憾:对本节内容,难度不高,本人认为,教师的干预(讲解)还是太多。在以后的教学中,对于一些较简单的内容,应放手让学生多一些探究与合作。随着教育改革的深化,教学理念、教学模式、教学内容等教学因素,都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,关注学生个性和潜能的发展,使教学过程更加切合《课程标准》的要求。 对于本教学设计,时间仓促,不足之处在所难免,期待与各位同仁交流。 一、概述 教材内容:等比数列的概念和通项公式的推导及简单应用 教材难点:灵活应用等比数列及通项公式解决一般问题 教材重点:等比数列的概念和通项公式 二、教学目标分析 1.知识目标 1) 2)掌握等比数列的定义 理解等比数列的通项公式及其推导 2.能力目标 1)学会通过实例归纳概念 2)通过学习等比数列的通项公式及其推导学会归纳假设 3)提高数学建模的能力 3、情感目标: 1)充分感受数列是反映现实生活的.模型 2)体会数学是来源于现实生活并应用于现实生活 3)数学是丰富多彩的而不是枯燥无味的 三、教学对象及学习需要分析 1、教学对象分析: 1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。 2)对归纳假设较弱,应加强这方面教学 2、学习需要分析: 四、教学策略选择与设计 1.课前复习 1)复习等差数列的概念及通向公式 2)复习指数函数及其图像和性质 2.情景导入 一、探究式教学模式概述 1、探究式教学模式的含义。探究式教学就是学生在教师引导下,像科学家发现真理那样以类似科学探究的方式来展开学习活动,通过自己大脑的独立思考和探究,去弄清事物发展变化的起因和内在联系,从中探索出知识规律的教学模式。它的基本特征是教师不把跟教学内容有关的内容和认知策略直接告诉学生,而是创造一种适宜的认知和合作环境,让学生通过探究形成认知策略,从而对教学目标进行一种全方位的学习,实现学生从被动学习到主动学习,培养学生的科学探究能力、创新意识和科学精神。可见,探究式教学主张把学习知识的过程和探究知识的过程统一起来,充分发挥学生学习的自主性和参与性。 2、堂探究式教学的实质。课堂探究式教学的实质是使学生通过类似科学家科学探究的过程来理解科学探究概念和科学规律的本质,并培养学生的科学探究能力。具体地说,它包括两个相互联系的方面:一是有一个以“学”为中心的探究性学习环境。在这个环境中有丰富的教学资源,而且这些资源是围绕某个知识主题来展开的。这个学习环境具有民主和谐的课堂气氛,它使学生很少感到有压力,能自主寻找所需要的信息,提出自己的设想,并以自己的方式检验其设想。二是教师可以给学生提供必要的帮助和指导,使学生在研究中能明确方向。这说明探究式教学的本质特征是不直接把与教学目标有关的概念和认知策略告诉学生,取而代之的是教师创造出一种智力交流和社会交往的环境,让学生通过探究自己发现规律。 3、探究式教学模式的特征。 (1)问题性。问题性是探究式教学模式的关键。能否提出对学生具有挑战性和吸引力的问题,使学生产生问题意识,是探究教学成功与否的关键所在。恰当的问题会激起学生强烈的学习愿望,并引发学生的求异思维和创造思维。现代教育心理学研究提出:“学生的学习过程和科学家的探索过程在本质上是一样的,都是一个发现问题、分析问题、解决问题的过程。”所以培养学生的问题意识是探究式教学的重要使命。 (2)过程性。过程性是探究式教学模式的重点。爱因斯坦说:“结论总以完成的形式出现,读者体会不到探索和发现的喜悦,感觉不到思想形成的生动过程,也就很难达到清楚、全面理解的境界。”探究式教学模式正是考虑到这些人的认知特点来组织教学的',它强调学生探索知识的经历和获得新知识的亲身感悟。 (3)开放性。开放性是探究式教学模式的难点。探究式教学模式总是综合合作学习、发现学习、自主学习等学习方式的长处,培养学生良好的学习态度和学习方法,提倡和发展多样化的学习方式。探究式教学模式要面对大量开放性的问题,教学资源和探究的结论面对生活、生产和科研是开放的,这一切都为教师的教与学生的学带来了机遇与挑战。 二、教学设计案例 1、教学内容:数字排列中3、9的探究式教学。 2、教学目标。 (1)知识与技能:掌握数字排列的知识,能灵活运用所学知识。 (2)过程与方法:在探究过程中掌握分析问题的方法和逻辑推理的方法。 (3)情感态度与价值观:培养学生观察、分析、推理、归纳等综合能力,让学生体会到认识客观规律的一般过程。 3、教学方法:谈话探究法,讨论探究法。 4、教学过程。 (1)创设情境。教师:在高中数学第十章的教学中,有关数字排列的问题占有重要位置。我们曾经做过的有关数字排列的题目,如“由若干个数字排列成偶数”、“能被5整除的数”等问题,只要使排列成的数的个位数字为偶数,则这个数就是偶数,当排列成的数的个位数字为0或5时,则这个数就能被5整除。那么能被3整除的数,能被9整除的数有何特点? (2)提出问题。 问题1:在用1、2、3、4、5、6六个数字组成没有重复数字的四位数中,是9的倍数的共有() A、36个B、18个C、12个D、24个 问题2:在用0、1、2、3、4、5这六个数字组成没有重复数字的自然数中,有多少个能被6整除的五位数? (3)探究思考。点评:乍一看问题1,对于由若干个数字排列成9的倍数的问题,如:81、72、63、54、45、36、27、18、9这些能够被9整除的数的个位数字依次是1、2、3、4、5、6、7、8、9。因此,要考察能被9整除的数,不能只考虑个位数字了。于是,需另辟蹊径,探究能被9整除的数的特点,寻求解决问题的途径。 教师:同学们观察81、72、63、54、45、36、27、18、9这些数,甚至再写出几个能被9整除的数,如981、1872等,看看它们有何特点? 学生:它们都满足“各位数字之和能被9整除”。 教师:此结论的正确性如何? 学生:老师,我们证明此结论的正确性,好吗? 教师:好。 学生:证明:不妨以n是一个四位数为例证之。 设n=1000a+100b+10c+d(a,b,c,d∈N)依条件,有a+b+c+d=9m(m∈N) 则n=1000a+100b+10c+d =(999a+a)+(99b+b)+(9c+c)+d =(999a+99b+9c)+(a+b+c+d) =9(111a+11b+c)+9m =9(111a+11b+c+m) ∵ a,b,c,m∈N ∴ 111a+11b+c+m∈N 所以n能被9整除 同理可证定理的后半部分。 教师:看来上述结论正确。所以得到如下定理。 定理:如果一个自然数n各个数位上的数字之和能被9整除,那么这个数n就能够被9整除;如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。 教师:利用该定理可解决“能被3、9整除”的数字排列问题,请同学们先解答问题1。 学生:尝试1+4+5+6=16,1+3+4+5=13,2+3+4+5=14,2+4+5+6=17,1+2+3+4=10,1+2+5+6=14。 教师:启发学生观察这些数字有何特点?提问学生。 学生:可以看出只要从1、2、3、4、5、6这六个数中,选取的四个数字中含1(或2),或者同时含1、2,选取的四个数字之和都不是9的倍数。 教师:请学生们继续尝试选取其他数字试一试。 学生:3+4+5+6=18是9的倍数。 教师:因此用1、2、3、4、5、6六个数字组成没有重复数字的四位数中,是9的倍数的数,就是由3、4、5、6进行全排列所得,共有=24(个)。 故应选D。 (4)学以致用。 问题2:在用0、1、2、3、4、5这六个数字组成没有重复数字的自然数中,有多少个能被6整除的五位数? 教师:从上面的定理知:如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。同学们对问题2有何想法? 学生讨论: 学生1:被6整除的五位数必须既能被2整除,又能被3整除,故能被6整除的五位数,即为各位数字之和能被3整除的五位偶数。 学生2:由于1+2+3+4+5=15,能被3整除,所以选取的5个数字可分两类:一类是5个数字中无0,另一类是5个数字中有0(但不含3)。 学生3:第一类:5个数字中无0的五位偶数有。 第二类:5个数字中含有0不含3的五位偶数有两类,第一,0在个位有个;第二,个位是2或4有,所以共有+ 。 学生4:由分类计数原理得:能被6整除的无重复数字的五位数共有+ + =108(个)。 (5)概括强化。 重点:了解数字排列问题的特点,理解掌握数字排列中3、9问题的规律。 难点:数字排列知识的灵活应用。 关键:证明的思路以及定理的得出。 新学知识与已知知识之间的区别和联系:已知知识“由若干个数字排列成偶数”、“能被5整除的数”等问题,只要使排列成的数的个位数字为偶数,则这个数就是偶数,当排列成的数的个位数字为0或5时,则这个数就能被5整除”。新学知识“如果一个自然数n各个数位上的数字之和能被9整除,那么这个数n就能够被9整除;如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。都是数字排列知识,要学会灵活应用。 (6)作业。请同学们自拟练习题,以求达到熟练解决此类问题的目的。 总之,探究式教学模式是针对传统教学的种种弊端提出来的,新课程改革强调改变课程过于注重知识的传授和过于强调接受式学习的状况,倡导学生主动参与乐于探究、勤于动手,让学生经历科学探究过程,学习科学研究方法,并强调获得知识、技能的过程成为学会学习和形成价值观的过程,以培养学生的探究精神、创新意识和实践能力。 一、教材分析 本小节选自《普通高中课程标准数学教科书-数学必修(一)》(人教版)第二章基本初等函数(1)2.2.2对数函数及其性质(第一课时),主要内容是学习对数函数的定义、图象、性质及初步应用。对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。虽然这个内容十分熟悉,但新教材做了一定的改动,如何设计能够符合新课标理念,是人们十分关注的,正因如此,本人选择这课题立求某些方面有所突破。 二、学生学习情况分析 刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。教师必须认识到这一点,教学中要控制要求的拔高,关注学习过程。 三、设计理念 本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的,针对学生的学习背景,对数函数的教学首先要挖掘其知识背景贴近学生实际,其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。 四、教学目标 1.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型; 2.能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点; 3.通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生运用函数的观点解决实际问题。 五、教学重点与难点 重点是掌握对数函数的图象和性质,难点是底数对对数函数值变化的影响. 六、教学过程设计 教学流程:背景材料→引出课题→函数图象→函数性质→问题解决→归纳小结 (一)熟悉背景、引入课题 1.让学生看材料: 材料1(幻灯):马王堆女尸千年不腐之谜:一九七二年,马王堆考古发现震惊世界,专家发掘西汉辛追遗尸时,形体完整,全身润泽,皮肤仍有弹性,关节还可以活动,骨质比现在六十岁的正常人还好,是世界上发现的首例历史悠久的湿尸。大家知道,世界发现的不腐之尸都是在干燥的环境风干而成,譬如沙漠环境,这类干尸虽然肌肤未腐,是因为干燥不利细菌繁殖,但关节和一般人死后一样,是僵硬的,而马王堆辛追夫人却是在湿润的环境中保存二千多年,而且关节可以活动。人们最关注有两个问题,第一:怎么鉴定尸体的年份?第二:是什么环境使尸体未腐?其中第一个问题与数学有关。 图4—1 (如图4—1在长沙马王堆“沉睡”近2200年的古长沙国丞相夫人辛追,日前奇迹般地“复活”了)那么,考古学家是怎么计算出古长沙国丞相夫人辛追“沉睡”近2200年?上面已经知道考古学家是通过提取尸体的残留物碳14的残留量p,利用t?logp 57302估算尸体出土的年代,不难发现:对每一个碳14的含量的取值,通过这个对应关系,生物死亡年数t都有唯一的值与之对应,从而t是p的函数; 如图4—2材料2(幻灯):某种细胞分裂时,由1个分裂成2个,2个分裂成4个??,如果要求这种细胞经过多少次分裂,大约可以得到细胞1万个,10万个??,不难发现:分裂次数y就是要得到的细胞个数x的函数,即y?log2x; 图4—2 1.引导学生观察这些函数的特征:含有对数符号,底数是常数,真数是变量,从而得出对数函数的定义:函数y?logax(a?0,且a?1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞). 1对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:注意:○ x2对数函数对底数的限制:(a?0,都不是对数函数.○5y?2log2x,y?log5且a?1). 3.根据对数函数定义填空; 例1 (1)函数y=logax的定义域是___________ (其中a>0,a≠1) (2)函数y=loga(4-x)的定义域是___________ (其中a>0,a≠1)说明:本例主要考察对数函数定义中底数和定义域的限制,加深对概念的理 解,所以把教材中的解答题改为填空题,节省时间,点到为止,以避免挖深、拓展、引入复合函数的概念。 [设计意图:新课标强调“考虑到多数高中生的认知特点,为了有助于他们对函数概念本质的理解,不妨从学生自己的生活经历和实际问题入手”。因此,新课引入不是按旧教材从反函数出发,而是选择从两个材料引出对数函数的概念,让学生熟悉它的知识背景,初步感受对数函数是刻画现实世界的又一重要数学模型。这样处理,对数函数显得不抽象,学生容易接受,降低了新课教学的起点] 2 (二)尝试画图、形成感知1.确定探究问题 教师:当我们知道对数函数的定义之后,紧接着需要探讨什么问题?学生1:对数函数的图象和性质 教师:你能类比前面研究指数函数的思路,提出研究对数函数图象和性质的.方 法吗? 学生2:先画图象,再根据图象得出性质 教师:画对数函数的图象是否象指数函数那样也需要分类?学生3:按a?1和0?a?1分类讨论 教师:观察图象主要看哪几个特征? 学生4:从图象的形状、位置、升降、定点等角度去识图 教师:在明确了探究方向后,下面,按以下步骤共同探究对数函数的图象:步骤一:(1)用描点法在同一坐标系中画出下列对数函数的图象y?log2xy?log1x 2 (2)用描点法在同一坐标系中画出下列对数函数的图象y?log3xy?log1x 3步骤二:观察对数函数y?log2x、y?log3x与y?log1x、y?log1x的图象特23征,看看它们有那些异同点。 步骤三:利用计算器或计算机,选取底数a(a?0,且a?1)的若干个不同的值, 在同一平面直角坐标系中作出相应对数函数的图象。观察图象,它们有哪些共同特征? 步骤四:规纳出能体现对数函数的代表性图象 步骤五:作指数函数与对数函数图象的比较2.学生探究成果 (1)如图4—3、4—4较为熟练地用描点法画出下列对数函数y?log2x、 y?log1x、 y?log3x、y?log1x的图象23图4—3图4—4 (2)如图4—5学生选取底数a=1/4、1/5、1/6、1/10、4、5、6、10,并推荐几位代表上台演示‘几何画板’,得到相应对数函数的图象。由于学生自己动手,加上‘几何画板’的强大作图功能,学生非常清楚地看到了底数a是如何影响函数y?logax(a?0,且a?1)图象的变化。 图4—5 (3)有了这种画图感知的过程以及学习指数函数的经验,学生很明确y = loga x (a>1)、y = loga x (0(中部) 【高中数学教学设计】相关文章: 高中数学教学设计03-19 高中数学教学设计【经典】05-23 高中数学的教学设计02-21 高中数学教学设计02-07 高中数学的教学设计05-27 高中数学单元教学设计02-19 高中数学对数教学设计01-23 高中数学的教学设计【必备】09-23 高中数学教学设计(精)10-01 高中数学教学设计(精品)06-11 高中数学教学设计 篇6
高中数学教学设计 篇7
高中数学教学设计 篇8
高中数学教学设计 篇9
高中数学教学设计 篇10
高中数学教学设计 篇11
高中数学教学设计 篇12
高中数学教学设计 篇13
高中数学教学设计 篇14